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Executive Summary  

Traffic crashes cost billions of dollars annually in life and property damage worldwide. 

Hence, traffic safety improvement has been a top strategic goal of the U.S. Department of 

Transportation (USDOT) and an important goal for the Washington State Department of 

Transportation (WSDOT) over the past several years. To prioritize spending of limited safety 

improvement funds, a statewide analytical tool for highway safety performance assessment is 

needed. Although existing GIS-based tools are good for visualization, they do not have the 

desired functionality for statewide traffic safety performance assessment. This research extended 

the current state-of-the-art for predicting crash counts by severity (CCS) to develop a two-stage 

regression model (integrating logit and generalized linear models) and a generalized nonlinear 

regression model for formulating a new method for identifying CCS-based hotspots. The hotspot 

identification (HSID) method can be utilized to improve the safety performance module of the 

Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net) and enable a 

regional, map-based, real-time analytical platform for statewide highway safety performance 

assessment. The most important contributing factors (static and dynamic) to traffic crashes of 

different severity types, including traffic characteristics, road conditions, and weather conditions, 

were identified by using a structured framework developed in this research. A total of 802 road 

segments on I-5, I-90, I-82, I-182, I-205, I-405 and I-705 in Washington state were selected as 

candidate sites for data collection. A two-stage model was developed to predict crash counts on 

freeway segments by severity. The regression analysis showed that the contributing factors—

including annual average daily traffic per lane (AADT/Lane), number of lanes (NOL), curvature 

of segment (COS), width of outer shoulder (OSW), width of inner shoulder (ISW), width of 

median (MWD), average speed limit (SPL), lane surface type (LST), outer shoulder type (OST), 
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inner shoulder type (IST), and road surface conditions (RSC)—have strong relationships with the 

crash frequencies of different severity levels. A CCS-based HSID method was developed by 

employing the two-stage and generalized nonlinear regression approaches. A new safety 

performance index (SPI) and a new potential safety improvement index (PSII) were developed 

by introducing a risk weight factor and were compared with three indices by employing HSID 

evaluating methods. The results of four consistency tests revealed that the SPI method is the 

most consistent and reliable method for identifying hotspots. Although it can only be applied to 

roadway segments where the crash data for different levels of severity are available, with the 

rapid development of intelligent transportation systems and data collection technologies, this 

method could become quite useful in identifying high-risk road sites. On several criteria, the SPI 

outperformed other methods by a wide margin. Next, a generalized, nonlinear, model-based 

multinomial logistic regression approach was developed to estimate the probability and 

frequency of crashes for different severity levels and was compared with traditional indices. It 

also showed that the significance and nonlinearity for each crash severity level were different 

among the contributing factors. This evaluation also suggested that the SPI method (among the 

methods compared) has the potential to become the industry standard. Finally, a regional, map-

based analytical platform was developed within the DRIVE Net system by expanding the safety 

performance module with the new SPI and PSII functions.  

Future work will focus on the following three directions: (1) developing a framework for 

a real-time safety performance analysis platform; (2) considering an analysis of crash frequency 

by collision type and severity; (3) developing new criteria for evaluating methods of identifying 

hotspots based on new safety performance indexes.  
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Chapter 1 Introduction  

1.1 Background  

Traffic collisions contribute to the loss of billions of dollars annually around the world. 

Researchers have sought ways to better understand the factors that affect the probability of 

crashes and their severities. The objective has been to predict the likelihood of crashes more 

accurately and to provide guidance for developing more effective countermeasures aimed at 

reducing the number of crashes (Lord and Mannering, 2010). As such, traffic safety 

improvement has been among the top strategic goals of the United States Department of 

Transportation (USDOT) and an important priority for the Washington State Department of 

Transportation (WSDOT) over the past several years. To prioritize spending of the limited 

safety improvement funds, a statewide analytical tool for highway safety performance 

assessment is needed. Although existing GIS-based tools are good for visualization, they do not 

have the desired functionality for statewide traffic safety performance assessment.  

1.1.1 Challenges in Identifying Major Factors for High Risk Locations   

Traffic crashes are rare events and thus multiple years of observations are typically 

required in order to conduct statistical analyses. Over the observation period, there are likely 

changes in traffic demand, roadway geometry, and other relevant factors that may influence both 

crash frequency and severity. Furthermore, dynamic variables are usually represented with their 

expected values (or another point estimate) during the data collection period. This makes it 

challenging to identify spots with relatively high crash risk, as well as to determine the potential 

contributing factors to crashes that occur at such locations. Without properly recognizing the 

major factors that lead to the high risk locations being identified, countermeasures selected to 

reduce traffic crashes may not be as effective as expected, and therefore, the expenditure of 

valuable resources may not be optimized.  
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1.1.2 Importance of Taking into Account Crash Severities for Hotspot Identification  

Hotspot identification (HSID) is of great importance to transportation authorities in their 

efforts to improve highway safety. Qu and Meng (2014) concluded that the severity of crashes 

should not be neglected in the HSID process. Figure 1-1 shows the distribution and locations of 

traffic fatalities by county in Washington state for 2014 (NHTSA, 2014). However, hotspots 

corresponding to locations with high crash risk can be quite different when crash frequency by 

different levels of crash severity is considered. It is particularly important to take into account 

crash severities in site ranking because the costs of crashes are significantly different at various 

severity levels. This means that, for instance, a road segment with a few fatal crashes may be 

considered more hazardous than a road segment with a lot of property damage only crashes and 

zero fatalities. Therefore, it is necessary to estimate accident frequency for each severity type 

separately.  

  

Figure 1-1 Distribution and location maps of traffic fatalities by county in Washington state for 2014 

(NHTSA, 2014) 

 

1.1.3 The Need for Developing a Regional, Map-Based Platform  

According to the 2015 WSDOT Gray Notebook, there were 462 traffic fatalities and 

2,010 serious injuries on Washington’s public roads in 2014. These numbers represent an 
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increase from 2013 (a 6 percent increase for traffic fatalities and a 5 percent increase for serious 

injuries, as illustrated in figure 1-2). In 2010, WSDOT began a new Strategic Highway Safety 

Plan that aims to end traffic-related deaths and serious injuries by 2030.  

Recently, WSDOT revised its safety program by instituting the Sustainable Highway 

Safety Program (Sustainable Safety), a more integrated and analytic multimodal approach. 

Sustainable Safety continues to evolve from a reactive approach, in which safety enhancements 

are applied to areas with a history of crashes, to a more proactive, risk-based approach in which 

WSDOT predicts and analyzes crash locations by evaluating the factors that contribute to 

crashes. To accomplish such a goal, an online platform that could enable quick and easy 

quantification of safety performance measures over the state highway network would be highly 

desirable. Such a platform would significantly cut down the time and labor hours needed to 

conduct safety analyses. The proposed regional, map-based analytical platform for highway 

safety performance assessment directly addresses this need.   

  

Figure 1-2 Trends of traffic fatalities and serious injuries on all Washington state public roads from 2005 to 2014 

1.2 Problem Statement  

Over the past several decades, a number of studies have focused on finding the 

relationships between traffic crash frequencies and potential contributing factors such as 



4  

roadway geometry and environmental, traffic, and human factors. A number of statistical 

modeling techniques have been developed on the basis of the diverse characteristics of collisions 

in different circumstances. The majority of these models are generalized linear models (GLMs), 

such as Poisson (Jovanis and Chang, 1986; Miaou and Lum, 1993; Miaou, 1994), gamma 

(Winkelmann and Zimmermann, 1995; Oh, Washington and Nam, 2006), negative binomial 

(Miaou, 1994; Maher and Summersgill, 1996; Milton and Mannering, 1998; Chin and Quddus, 

2003; Wang, Ieda and Mannering, 2003; Wang and Nihan, 2004; Donnell and Mason, 2006; 

Kim, Wang and Ulfarsson, 2007; Daniels et al., 2010; Malyshkina and Mannering, 2010a), 

random-parameters (ElBasyouny and Sayed, 2006; Anastasopoulos and Mannering, 2009) and 

bivariate/multivariate regression models (Park and Lord, 2007; Lao et al., 2011).  

Conventional GLMs provide a straightforward way to examine the relationship between 

crash frequency and crash contributing factors. However, the GLM-based approach is 

constrained by its linear model specifications. For example, the crash rate (number of crashes 

per million vehicles per year) is believed to increase with traffic volume until a certain point, 

after which it should start to decrease with increasing traffic volume (Wang et al., 2010). The 

conventional GLMs are not capable of modeling such relationships. This inappropriate 

relationship enforced by conventional GLMs may lead not only to inaccurate modeling results 

but also inaccurate crash frequency elasticity analyses. The elasticity analyses of specific factors 

and locations are important since transportation agencies rely on estimated elasticity to 

understand the potential improvements in traffic safety that may be realized at a location.   

Another issue for the traditional frequency-based modeling methods is their estimation 

assumption that fatality rates are identical across locations with different volumes (Milton, 

Shankar and Mannering, 2008). Significant error may be introduced when this assumption is 

violated. Thus, a new method to simultaneously consider both incident frequency and severity is 
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highly desired. As shown by our literature review, very few studies monitor and assess safety 

performance on a regional level (Ivan et al., 2007)  

1.3 Research Objectives  

Specifically, the proposed research had the following objectives:   

(1) Improve current crash modeling methods (by introducing a two-stage regression model 

and a non-linear prediction function in the form of generalized nonlinear models 

(GNMs)) to describe the relationship between injury-severity and its contributing factors.   

(2) Develop a safety performance index (SPI) by considering crash frequency at different 

levels of crash severity, based on the accident frequency expected from the improved 

modeling approach and associated factors, to reflect safety condition changes with 

roadway, vehicle, and environmental factors.  

(3) Monitor the safety performance of the state highway network on a regional map by using 

the SPI.  

(4) Develop a potential safety improvement index (PSII) for identification of the key factors 

that may lead to safety improvements at each location on the basis of the elasticity 

estimates in the new model.   

(5) Develop safety improvement analysis methods for accident hotspots based on the 

overlap of the SPI and PSII.  

  

1.4 Methodology  

The research team conducted a comprehensive review of literature to identify static and 

dynamic contributing factors to traffic crashes and appropriate segmentation and statistical 

analysis approaches. The research team developed data collection and analysis plans. Using the 

collected data, the team developed various prediction models for different crash severity types.  
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To accommodate large-scale safety analysis and performance monitoring, both SPI and PSII 

were developed by considering crash frequencies with different levels of crash severity, and they 

were further implemented on an interactive regional map. The proposed tool was built on the 

Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net) system (Ma, 

Wu and Wang, 2011), in which various layers of needed data have already been internally 

connected, to save cost for this study.   

The highway SPI can be used as a basis for color-coding the map to show the safety 

performance of each road segment. The PSII, computed from elasticity estimates at each 

location, can be employed to highlight potential safety improvements on the state highway 

network. The highway SPI changes with traffic and roadway conditions and may be used to 

monitor safety performance of highway segments in real time. The PSII can be used to identify 

and prioritize safety improvement measures for a specific segment. By combining these two 

indices on the regional map, one can easily identify accident hotspots and the potential 

contributing factors to be considered in a safety improvement package to help WSDOT 

accomplish its goal of zero fatal collisions.  

  

  

Chapter 2 Literature Review  

Traffic safety performance assessment largely relies on incident prediction and hotspot 

identification (HSID). Recent advances in incident prediction models have focused on 

improving estimations of incident duration, crash severity, and crash frequency. Some 

researchers have also investigated the modeling of crash counts by severity (CCS) and crash 

counts by collision type. The key methods for incident duration prediction include parametric 

models, nonparametric models, and hazard-based duration modeling methods. For injury 
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severity, logit models and various extensions are the most commonly used. The research for 

crash frequency prediction has mainly focused on the development of generalized linear and 

nonlinear models. There have also been several identification and evaluation methods developed 

for HSID.  Figure 2-1 depicts a research path in the field of traffic safety performance 

assessment.    
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Figure 2-1 The research path in the field of traffic safety performance assessment  

2.1. Incident Duration  

A variety of methods have been developed to model traffic incident duration in the last 

several decades. These methods include analysis of variance, parametric regression, 

nonparametric regression, hazard-based methods, decision trees, fuzzy logic, artificial neural 

networks, and Bayesian network models. A review of recent research on the prediction of 

incident duration showed that the majority of previous research activities have found that the 

distribution of incident durations to be skewed, with a long tail to the right, a shape that is 

similar to the lognormal or Weibull distribution. Incident duration typically has large variance in 

  



9  

comparison to the average duration. Most results have shown that the standard deviation is 

around 70 percent of the mean.  

Poor data quality is a common problem that many researchers have acknowledged and 

dealt with in different ways. Some data sets are not complete (i.e., they are missing select 

observations entirely or have incomplete observations for which not all measures were 

recorded), and others may contain inaccurate data, which can drastically affect prediction 

performance. Other data sets are insufficient in size, which leads to issues with statistical power 

and making reliable predictions. The aforementioned data problems may be caused by 

integrating different incident data sources from parties that include law enforcement, 

transportation authorities and insurance companies, as was noted in previous research.  

2.1.1 Parametric Models  

To date, various parametric models have been proposed for the analysis of traffic 

incident durations. Lord and Mannering (2010) and Savolainen, Mannering et al. (2011) 

documented a review of a number of methodological alternatives used in traffic safety analysis. 

Among these parametric models, the accelerated failure time (AFT) models have been the most 

widely used in previous studies (Weng et al., 2014). Yang et al., (2015) indicated that the 

Weibull AFT model with shared frailty is appropriate for modeling pedestrian waiting durations. 

Junhua, Haozhe and Shi (2013) estimated freeway incident duration by using AFT modeling, 

which also helped overcome difficulties associated with missing data. Statistical models have 

been the widest used parametric techniques in traffic safety analysis for many years. Some 

examples follows:   

 Poison regression (Jovanis and Chang, 1986; Joshua and Garber, 1990; Miaou and Lum, 

1993; Miaou, 1994)   
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 Negative binomial regression (Lord, Washington and Ivan, 2005; El-Basyouny and 

Sayed, 2006; Kim and Washington, 2006; Malyshkina and Mannering, 2010a)  

 Zero-inflated Poison and negative binomial regression (Shankar et al., 2003; Lord, 

Washington and Ivan, 2005; Malyshkina and Mannering, 2010b)  

 Random effects model (Li et al., 2008; Wang et al., 2010) etc.  

However, parametric models rely on lots of assumptions that may not represent reality.  

2.1.2 Nonparametric Models  

Nonparametric models gained popularity to eliminate some drawbacks of parametric 

models. Stewart (1996) pointed out the advantages of using the classification and regression tree 

(CART) model in traffic safety analysis for determining complex interactions among the 

variables. The application of nonparametric regression trees in the other safety literature 

includes prediction of crash frequency (Karlaftis and Golias, 2002; Chang and Chen, 2005), 

rear-end crash analysis (Yan and Radwan, 2006), and exploration of the effects of drivers’, 

vehicles’, and environments’ characteristics associated with crash avoidance maneuvers (Harb et 

al., 2009). Another non-parametric approach, Bayesian networks (BN), can better interpret the 

complex relationships among variables. Gregoriades (2007) used BN to identify accident prone 

spots on roadway networks. Other applications of BN include severity analysis (de Oña, Mujalli 

and Calvo, 2011; de Oña et al., 2013) and traffic crash causality mechanisms (Hongguo, 

Huiyong and Fang, 2010). Other nonparametric models, such as artificial neural networks (Wei 

and Lee, 2007; Lao et al., 2011), fuzzy logic models (Wu and Chen, 2008), text analysis 

approach (Pereira, Rodrigues and BenAkiva, 2013), and support vector machine (Li et al., 2008, 

2012) have been proposed for crash analysis. While nonparametric models do not assume a 

functional form and thus are more flexible, it is harder to interpret the marginal effects of 
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independent variables with a nonparametric model (Weng et al., 2015). They are also harder for 

generalization to other data sets (Lord and Mannering, 2010).  

2.1.3 Hazard-Based Duration Modeling Method  

Hazard-based duration modeling is used to study the conditional probability of a time 

duration ending at some time t, given that the duration has continued until time t  (Hensher and 

Mannering, 1994), and it has been extensively applied to problems within the transportation 

discipline including modeling the time between individuals’ traffic accidents, the time between 

incident occurrence and clearance, and the time between trips (Alkaabi, Dissanayake and Bird, 

2011; Psarros, Kepaptsoglou and Karlaftis, 2011; Hojati et al., 2013; Li and Shang, 2014; Lin, 

Wang and Sadek, 2016). Because of the fact that the time variable is connected with a 

conditional probability, hazard-based duration modeling has an advantage in that it allows the 

explicit study of the relationship between incident duration and the explanatory variables. Nam 

and Mannering (2000) removed impractical variables from a hazard-based model and developed 

a sub-model for each stage of incident duration, including incident detection, duration, the time 

of response, and clearance.   

2.2. Injury Severity  

Many studies have focused on estimating crash severity (Anarkooli and Hosseinlou, 

2016). A large number of these studies have been conducted to determine significant factors 

influencing the increased levels of injury severity of crashes. Also, various techniques have been 

employed in order to explore the effects of these factors on injury severity. These techniques can 

be classified into four major groups: discrete outcome models, data mining methods, soft 

computing, and regression methods (Mujalli and de Oña, 2013). In addition, we can categorize 

the contributing factors into five groups: driver conditions, vehicle characteristics, roadway 
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geometry and traffic conditions, environmental conditions, and types of collisions (Lee and Li, 

2014).   

 Discrete choice models are popular for predicting injury severity because of the discrete 

outcome. Krull, Khattak and Council (2000) used a logistic model to study the impact of driver, 

vehicle, roadway geometrics, and traffic-related impacts on the probability of fatality and injury. 

Similarly, Bedard et al. (2002) applied multivariate logistic regression to determine the fatality 

risk of drivers involved in crashes.   

Some researches adapted the multinomial logit model (MNL) to predict crash severity. 

The outcomes of MNL models are not ordinal. So, MNL ignores some restrictions assumed by 

standard ordered models (Zhang, 2010). Bham, Javvadi and Manepalli (2011) studied the 

differences in crash-contributing factors in collision types using MNL.  MNL has also been used 

to analyze the severity of crashes in rural and urban areas for crashes involving large trucks 

(Khorashadi et al., 2005), the effects of increasing the speed limit (Malyshkina and Mannering, 

2008), and factors related to work zones (Robin, 2014). Kockelman and Kweon (2002) 

investigated the effects of vehicle types, crash type, weather, speed, and occupant characteristics 

on crash severity (i.e., no injury, not severe injury, severe injury, and death). In the MNL model, 

the odds between any two outcomes are independent of the number and nature of other 

outcomes being simultaneously considered. On the other hand, nested logit (NL) allows 

correlations between choices by nesting them. Several studies, such as those by Nassar, 

Saccomanno and Shortreed, 1994; Abdel-Aty and Abdelwahab, 2004; Savolainen and 

Mannering, 2007; and Patil, Geedipally and Lord, 2012, have used NL structure to analyze crash 

severity.  

O’Donnell and Connor (1996) used ordered logit and ordered probit models while 

comparing the injury severity as a function of drivers’ characteristics. They identified the 



13  

victim’s age and vehicle speed as the main contributing factors to crash severity. An ordered 

probit model was also used by Duncan, Khattak and Council (1998) to examine the effects of 

occupant characteristics and roadway and environmental conditions on crash severity in rear-end 

crashes between trucks and passengers. Khattak (1999) presented another ordered probit model 

to examine the effects of information accuracy on rear-end crash propagation. Abdel-Aty (2003) 

tested multinomial logit and nested logit models with different nesting structures and compared 

their results to the results of a probit model. This comparison showed that the ordered probit 

model was simpler and at the same time produced better results than the multinomial logit 

model.  

The results of Ma et al. (2015) showed that several explanatory variables, including at-

fault driver's age, at-fault driver having a license or not, alcohol usage, speeding, involvement of 

pedestrians, type of area, weather condition, pavement type, and collision type, significantly 

affect crash severity. Mergia et al. (2013) found that semi-truck-related crashes, higher number 

of lanes on freeways, higher number of lanes on ramps, speeding-related crashes, and alcohol-

related crashes tend to increase the likelihood of sustaining severe injuries at freeway merging 

locations. Wang, Chen and Lu (2009) found that the factors that significantly influence injury 

severity at freeway diverge areas include length of deceleration and ramp lanes, curve and grade 

at diverge areas, light and weather conditions, alcohol or drug involvement, heavy-vehicle 

involvement, number of lanes on the mainline freeway section, average daily traffic on the 

mainline, pavement surface condition, land type, and crash type.  

2.3. Crash Frequency  

Existing research on crash frequency prediction is mostly regression analyses based. All 

models divide the roadway into several segments and aggregate all the roadway, environmental, 

and crash data on the basis of road segments. Different types of regression models are used to 
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predict crash frequency in the form of safety performance functions (SPF). An SPF is an 

equation that predicts crash density (typically number of crashes each year) at a location as a 

function of prevailing conditions and roadway characteristics. Multiple linear regression analysis 

techniques have been extensively used to develop crash prediction models (Okamoto and Koshi, 

1989; Miaou and Lum, 1993; Golob and Recker, 2003). Jovanis and Chang (1986) identified a 

number of disadvantages of using linear regression in the accident prediction context, such as 

violation of homoscedasticity and prediction of a negative number of accidents. To deal with 

this problem, researchers adapted count data models such as the Poisson, negative binomial, 

zero-inflated Poisson, zero-inflated negative binomial, and hurdle regression models, assuming 

log-linear relationships between crash frequency and explanatory variables. Poisson and 

negative binomial regression models have been used to predict numbers of traffic crashes (Jones, 

Janssen and Mannering, 1991; Hadi et al., 1995; Shankar, Mannering and Barfield, 1995; Poch 

and Mannering, 1996; Milton and Mannering, 1998; Abdel-Aty and Radwan, 2000; Savolainen 

and Tarko, 2005). Similarly, Savolainen and Tarko (2005) found a statistical relationship 

between crash occurrence and intersection geometric characteristics, including curvature of the 

main road. Lord, Guikema and Geedipally (2008) proposed a model that describes random, 

discrete, and non-negative accidents, assuming an exponential relationship between the number 

of accidents and the contributing factors. This approach solved the problem associated with 

homoscedasticity in linear regression model; however, these models were associated with over-

dispersion and heterogeneity.    

The negative Binomial regression model was developed to address the over-dispersion 

issue. Miaou and Lum (1993) showed that the negative binomial model is limited in dealing with 

the randomness of the shape parameters. On the other hand, El-Basyouny and Sayed (2006) 

found that in terms of model application (identification and ranking of accident-prone locations), 
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randomness in the shape parameter of the negative binomial regression can give satisfactory 

results. Anastasopoulos and Mannering (2009) concluded that random shape parameters need to 

be used when the standard deviation of density is statistically significant. Kumara and Chin 

(2003) applied zero-inflated negative binomial models to capture the apparent “excess” zeros 

that commonly arise in crash data. The zero-inflated Poisson and negative binomial models were 

also applied to estimate crash counts in Shankar et al. (2003); Qin, Ivan and Ravishanker (2004); 

and Lord, Washington and Ivan (2005, 2007).  Malyshkina and Mannering (2010b) proposed a 

two-state Markov switching count-data model as an alternative to zero-inflated models to 

account for the excess zeros in crash frequency analysis. The Markov switching approach allows 

direct statistical estimation to switch between zero and a crash count, whereas traditional zero-

inflated models do not.   

As discussed previously, there may be reason to expect spatial and temporal correlation 

among observations. To account for such correlation, using random and fixed effects in crash 

frequency analysis on panel data is quite common. Random-effects models assume a spatial and 

temporal distribution of the unobserved effects with explanatory variables. On the other hand, 

fixed-effects models account for unobserved effects by indicator variables and assume 

correlation of unobserved effects with individual variables. Random effects in the context of 

crash frequencies have been studied by a number of researchers, including Johansson (1996); 

Shankar et al. (1998); Miaou, Song and Mallick (2003); and Kweon and Kockelman (2004). 

Yaacob, Lazim and Wah (2012) analyzed crash frequency by using the fixed effect model.  

Anastasopoulos and Mannering (2009) explored the use of random-parameters count 

models as another methodological alternative in analyzing accident frequency. They concluded 

from their empirical results that random-parameters count models can provide a full 

understanding about the factors influencing crash frequencies.  
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Generalized linear models have also been employed to address collision prediction and 

crash frequency at intersections (Geedipally, Lord and Dhavala, 2012). Heydari, Miranda-

Moreno and Liping (2014) used two Bayesian generalized mixed linear models to predict crash 

speed and frequency. These models have the advantage of addressing the heterogeneity problem 

in observations and efficiently capturing potential intra-site correlations. Chen and Tjandra 

(2014) developed generalized linear models on the basis of temporal and weather variables to 

predict daily total collisions. Their models were applied to support scheduling of traffic 

operations, maintenance and enforcement, and dispatch of material and personnel resources. 

Zhang et al. (2014) use generalized linear regression models to predict the frequency of 

opposing left-turn conflicts at signalized intersections. They found that the use of conflict 

predictive models has potential to expand the uses of surrogate safety measures in safety 

estimation and evaluation.  

For GNMs, only limited studies in the field of incident prediction have been conducted. 

Lee et al. (2015) used generalized nonlinear models to develop crash modification factors 

(CMF) for changing lane width on roadway segments. The study demonstrated that the CMFs 

estimated with GNMs clearly reflect variations in crashes with lane width, which cannot be 

captured by the CMFs estimated with GLMs. Lao et al. (2014) formulated a generalized 

nonlinear model-based approach for modeling highway rear-end crash risk using Washington 

state traffic safety data.  Their results showed that truck percentage and grade have a parabolic 

impact: they increase crash risk initially, but decrease it after certain thresholds. Such non-

monotonic relationships cannot be captured by regular GLMs, which further demonstrate the 

flexibility of GNM-based approaches in analyzing the nonlinear relationships among data and 

providing more reasonable explanations.  
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2.4. Crash Counts by Severity  

Numerous efforts have been devoted to investigating crash occurrences as they relate to 

roadway design features, environmental factors and traffic conditions (Ma and Kockelman, 

2006). However, most research has modeled crash counts at different severity levels separately, 

which can lead to biased results in terms of parameter estimates and other model aspects (Ma, 

Kockelman and Damien, 2008). Ma, Kockelman and Damien (2008) further offered a 

multivariate Poisson-lognormal (MVPLN) specification that simultaneously modeled crash 

counts by injury severity. The MVPLN specification allowed for a more general correlation 

structure as well as accounting for over-dispersion.  

2.5. Crash Counts by Collision Type  

Over the past 20 years, a few researchers have developed crash prediction models by 

collision type. Hauer, Ng and Lovell (1988) were the first to develop such models. They 

developed models for 15 crash patterns at urban and suburban signalized intersections in 

Toronto, Ontario, Canada. Shankar, Mannering and Barfield (1995) developed models for six 

crash types. They concluded that models that predict crashes for different crash types have a 

greater explanatory power than a single model that predicts for all crash types combined 

together. Kockelman and Kweon (2002) developed crash type models (e.g., total, single-vehicle, 

and multi-vehicle crashes) by using ordered-probit models to examine the risks associated with 

various driver injury severity levels. Their study estimated the safety effects on drivers of 

different types of vehicles. Geedipally, Patil and Lord (2010) investigated the applicability of 

multinomial logit (MNL) models to predict the proportion of crashes by collision type and to 

estimate crash counts by collision type. Their method based on the MNL model was found 

useful to estimate crash counts by collision type, and it performed better than the method based 

on the use of fixed proportions.   
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2.6 Contributing Factors to Traffic Crashes  

The risk of crashes during rain and snow is greater than that in dry weather, even though 

motorists overtake less, drive more slowly, and maintain more reasonable following distances 

under inclement weather conditions (Hogema and Van der Horst, 1994; Agarwal, Maze and 

Souleyrette, 2005). The changes in driving behavior are, apparently, insufficient to compensate 

for the greater risk during bad weather (Bijleveld and Churchill, 2009). First, visibility decreases 

during rainfall. This is even more intense at night, since the light reflection on a wet road makes 

the detection of the road and objects nearby more difficult (Brodsky and Hakkert, 1988). 

Reduced visibility during precipitation, splashing water from other vehicles, and clouded 

windows as a result of high humidity during rain are the causes that lead to crashes. A layer of 

water on the road surface can also cause vehicles to lose contact with the road surface and skid 

(Bijleveld and Churchill, 2009).   

Many studies have focused on contributing factors to traffic crash frequency and severity 

(Tay and Rifaat, 2007; Haleem and Gan, 2015; Ma et al., 2015). Abdel-Aty and Radwan (2000) 

showed that heavy traffic volumes, speeding, narrow lane width, more lanes, urban roadway 

sections, narrow shoulder width, and reduced median width increase the likelihood of accident 

involvement. Rainfall constitutes a driving hazard for a number of reasons. Jung et al. (2014) 

combined vehicle to vehicle crash frequency and severity estimations to examine factor impacts 

on Wisconsin highway safety in rainy weather. They found that higher levels of average daily 

rainfall per month and wider left shoulder widths are factors that decrease the likelihood of 

vehicle to vehicle crashes.   

2.7. Hotspot Identification  

The identification of crash hotspots, also referred to as hazardous road locations, high-

risk locations, accident-prone locations, black spots, sites with promise, or priority investigation 
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locations, is the first step in the highway safety management process (Montella, 2010). There is 

a fairly extensive body of literature focused on methods for hotspot identification (HSID) 

(Cheng and Washington, 2005, 2008; Park, Lord and Lee, 2014). Studies have discussed 

methods based on accident count or frequency (Deacon, Zegeer and Deen, 1974), employed both 

accident rate (AR) and rate quality control (Stokes and Mutabazi, 1996), and adopted the joint 

use of accident frequency and rate to flag sites. To correct for the regressionto-the-mean bias 

associated with typical HSID methods (Hauer, 1980), some researchers have suggested using the 

empirical Bayes (EB) techniques (Hauer et al., 1991). This method combines clues from both 

the accident history of a specific site and expected safety of similar sites, and has the advantage 

of revealing underlying safety problems that otherwise would not be detected.  

2.8 Safety Performance Indices and Potential Safety Improvement Indices  

Safety performance indices are increasingly used to identify and combat the rising 

problems of road safety. Put simply, a road safety performance index is defined as a quantitative 

or qualitative metric based upon/developed from a series of observed characteristics from a 

specific collision (Wegman et al., 2008; Coll, Moutari and Marshall, 2013). Examples of road 

safety performance indices include number, frequency, and rate of crashes, number and severity 

of injuries, number of vehicles involved in collisions, type of collision, etc. Safety performance 

indices are useful in the sense that they can simplify the presentation of larger amounts of data. 

That said, because many factors affect traffic crashes, it can be difficult to evaluate such 

indicators individually. Therefore, decision-makers may prefer a unified, composite index. Such 

an index is commonly called the Composite Safety Performance Index (CSPI) (Wegman et al., 

2008; Coll, Moutari and Marshall, 2013). Some researchers have suggested using the EB 

method and accident reduction potential (ARP) to develop the CSPI (Cheng and Washington, 

2008; Coll, Moutari and Marshall, 2013). The current safety performance module in DRIVE 
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Net, however, uses the estimated crash frequency as the SPI and the ARP as the PSII. New 

safety performance and potential safety improvement indexes based on crash counts by severity 

were developed in this research.  

  

  



21  

Chapter 3 Identify Static and Dynamic Contributing Factors  

The factors contributing to traffic crashes of different severity types were identified by 

using the framework developed in the following sections. The structural framework for 

identifying factors contributing to traffic crashes and the methods for identifying static and 

dynamic contributing factors are explained in detail below.  

3.1 Structural Framework for Identifying Contributing Factors  

Many studies have investigated the factors that influence traffic crashes (Ma et al., 

2015). Karlaftis and Golias (2002) found that roadway geometry and pavement condition 

significantly affect accident rate. Farah, Bekhor and Polus (2009) analyzed drivers’ passing 

decisions on rural two-lane highways based on data collected from an interactive driving 

simulator. They found that traffic conditions, roadway geometry, and drivers' characteristics—

such as speed of the subject vehicle, gender, and age—have a significant effect on the risk 

associated with the passing behavior. De Oña, Mujalli and Calvo (2011) found that other factors, 

such as driver age, crash type, and lighting condition, also affect injury severity. On the basis of 

the state-of-the-art research on these factors influencing traffic crashes, we classified 

contributing factors into three types, i.e., traffic characteristics, road conditions, and weather 

conditions, as shown in figure 3-1. Road conditions were regarded as static contributing factors, 

since road types and geometry rarely change over short time periods. On the other hand, traffic 

characteristics change over the year, but they never change drastically unless a major change 

happens in geometric characteristics. So we included annual average daily traffic (AADT) in the 

analysis as an average AADT for the study period. Weather conditions usually vary with time 

and were regarded as a dynamic contributing factor. Crash frequencies, by severity, were 

considered to be the dependent variables in the incident prediction model. In fact, crash injury 

severity is usually categorized into five levels, including fatal, incapacitating injury, non-
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incapacitating injury, possible injury, and no injury or property damage only. Because of limited 

numbers of crash records, they were classified into two categories for this study: injury-fatal (IF) 

and property damage only (PDO).  

  

Figure 3-1 Structural framework for contributing factors to traffic crashes  

Based on the structural framework in figure 3-1, the approach to identifying contributing 

factors to traffic crashes was developed as illustrated in figure 3-2. There were six main steps for 

identifying the factors that contribute to different types of crash severities: (1) review and 

selection of factors; (2) classification of factors and development of hypotheses; (3) data 

collection; (4) detection of multicollinearity among factors; (5) regression modeling for each 

level of crash severity; and (6) significance testing for the factors. The selected contributing 

factors, which were classified into the three categories of traffic characteristics, road geometry, 

and weather conditions, were assumed to have a linear or nonlinear relationship with crash 

frequency at different severity levels. A data collection plan was made for the selected factors 

(see Chapter 4) and multicollinearity tests were performed. Various statistical models, including 

a generalized nonlinear model-based multinomial logit regression approach, were developed to 
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predict the crash rate and crash frequency of each type of severity (see Chapter 5). Finally, 

significance testing was implemented on the regression model to remove the insignificant 

predictors under a certain confidence level.    

3.2 Identify Static Contributing Factors  

The contributing factors were classified into road conditions road geometry (e.g., 

horizontal curve type, length of the segment, curvature of the segment, average number of lanes, 

lane width, and shoulder width), and speed limit. Because these factors are usually constant over 

longer periods of time, they were identified as static contributing factors. AADT remains 

relatively constant over time as long as the roadway type and land use characteristics stay 

constant. Over the whole study period, we assumed all the roadway factors to be constant. 

Consequently, the average value of AADT over the study period was considered to be a static 

contributory factor.  

  

Figure 3-2 Flowchart for identifying contributing factors to traffic crashes  
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3.3 Identify Dynamic Contributing Factors  

Weather conditions are usually time-dependent factors and thus were identified as 

dynamic contributing factors. The weather conditions were classified into two types, good 

weather condition (e.g., clear and dry) and adverse weather condition (e.g., rain, snow, ice, 

slush, wet). Dealing with dynamic contributory factors in a crash frequency model is relatively 

difficult. It is common that the largest number of crashes occurs in clear weather, but clear 

weather is also very common on road segments. So giving equal weight to crashes in both clear 

and adverse weather condition may result in a model that over-predicts crashes in normal 

weather conditions.  However, according to the literature discussed in Chapter 2, crashes are 

more likely to happen in adverse weather conditions. To deal with this problem, crashes were 

weighted on the basis of the duration of normal and inclement weather conditions. The data were 

gathered from airports in Washington State.   
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Chapter 4 Data Collection and Analysis  

This chapter explains the data collection plan, data analysis plan, and the summary 

statistics of the collected data.  

4.1 Data Collection Plan  

In this research, a data collection plan is developed to ensure that (1) appropriate data on 

the most important contributing factors to incidents were collected; (2) incidents with different 

severity types were included in the data collection plan; (3) highway facilities with different 

geometric conditions were included (e.g., different pavement types, different grades, different 

horizontal curvatures, etc.); and (4) acceptable ranges of dynamic contributing factors were 

included (e.g., different traffic volume levels, different weather conditions, etc.).  

In this task, the research team worked together with Washington State Department of 

Transportation (WSDOT) to identify various data sources and to collect the required data. Crash 

data were collected in terms of crash frequencies and severity levels. Usually, statistical models 

are produced for all crash severity levels (often referred to as KABCO, i.e., fatal (K), 

incapacitating injury (A), non-incapacitating injury (B), minor injury (C), and property damage 

only (PDO or O)) or for different crash severity levels, such as fatal and nonfatal injury crashes 

(e.g., KABC) or for PDO crashes. Although the data on crash frequency by severity are 

multivariate in nature, they have often been analyzed by modeling each severity level separately, 

without taking into account correlations that exist among different severity levels. In this 

research, the collected crash frequency data were classified into two categories: injury-fatal (IF) 

and property damage only (PDO).  

Crash data, roadway geometric characteristics, and AADT values were obtained from 

WSDOT for all Washington state owned roadways from 2011 to 2014. The candidate sites for 

data collection were selected as a total of 802 road segments on various Interstate highways in 
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Washington, including I-5, I-90, I-82, I-182, I-205, I-405 and I-705. The data collection period 

was from 2011-2014 for a total of four years of data. The total number of crashes recorded 

during the data collection period was 45,270, including 129 fatal crashes, 13,189 injury crashes, 

and 31,952 PDO crashes. Figure 4.1 illustrates the study area. The orange, red, and green lines 

denote the selected road segments on I-5, I-90, and I-82, respectively. It is well known that I-5 

has one of the highest rates of fatal crashes across all Interstates in the U.S. A total of 29,020 

crashes occurred on I-5 over 276.54 miles. All of the crash data were provided by WSDOT.  

 

 

Figure 4-1 Study area for I-5, I-90, and I-82 in Washington  

Weather conditions during the crashes can be found from the WSDOT crash report. But 

WSDOT does not maintain any weather information for the freeways throughout the year. So 

the team collected weather data from the ASOS website (Automated Surface Observing System : 

ASOS user's guide, 1998). This automated data collection system provides 1-minute, 5- minute, 
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hourly, and special observation data 24 hours a day. ASOS collects and archives data from 

various weather stations located at airports. In this analysis, the team assumed that the weather 

data of a station is representative of its neighboring roads. We collected the archived 

precipitation data for every 15 minutes. Then the team calculated the probability of the 

precipitation of a site from total hour of precipitation.  In this analysis, the team assumed that the 

roadway surface remained wet throughout the precipitation. Figure 4-2 shows the locations of all 

the stations in Washington state (Automated Surface Observing System : ASOS user's guide, 

1998).  

 

 

Figure 4-2 Locations of all the stations in Washington state (Automated Surface Observing System : 

ASOS user's guide, 1998) 
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4.2 Data Preparation Plan  

After collecting the data, a sequence of steps, starting with data cleaning, data 

integration, and data selection, were required to process the data for modeling purposes. These 

steps are addressed in detail.    

4.2.1 Data Cleaning      

It is quite impossible to collect a large amount of data without any noise and 

inconsistency. The data set might be missing important information, such as the milepost and 

travel direction of the involved vehicles, road surface conditions during a crash, or precipitation 

duration in the weather data, as all the information is recorded manually. Hence, the records 

with missing information were discarded during the data preprocessing, as they could have been 

misleading in the estimataion models. Some of the information that was excluded from the data 

set are included the following: 

1. crash records with missing inputs were not included for analysis  

2. missing precipitation data were excluded from analysis.  

4.2.2 Data Quality Control Based on Segmentation  

Success in developing crash prediction model depends on data quality (Cafiso, 

D’Agostino and Persaud, 2013). The most common technique for developing a crash prediction 

model is to divide the road sections into a number of segments. Then, all the crashes on any road 

segment are analyzed on the basis of roadway geometrics, traffic, and weather characteristics. 

Generally, segmentation of the roadway can be done in different ways (Cafiso, D’Agostino and 

Persaud, 2013):   

 Completely homogeneous, i.e., a new segment will start if any attribute changes;   
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 Based on curvature, i.e., a new segment starts when a tangent section transitions into a 

curve;   

 Homogeneous based on AADT, i.e. a new segment starts when AADT changes;   

 Fixed length segment, i.e., all the segments are of fixed length (typically 1 or 2 miles);   

 Two curves, two tangents, i.e., each segment consists a curve and a tangent.   

Crash locations are identified on the basis of police reports. Police reports estimate crash 

location on the basis of the spot where the vehicle was located upon police arrival and therefore 

do not always show the exact location. Furthermore, the number of accidents is often 

proportional to segment length. Therefore, if a segment is too short (less than 100 feet), the 

probability of an accident will be very small. As a result, in order to improve the quality of the 

data sets, the road segments with short lengths should be removed or aggregated to create longer 

segments.  

Segmentation, when based on multiple variables, may lead to very short homogeneous 

segments (Resende and Benekohal, 1997). For example, when the segmentation approach 

proposed by the Highway Safety Manual (HSM) is used, the presence of very short segments 

does not allow proper statistical inference for several reasons (AASHTO, 2010). The most 

important are the imperfect identification of crash locations, which are often taken from police 

reports (Qin and Wellner, 2012), and the fact that crashes are rare events, resulting in a great 

number of segments with zero crashes. Lengthening segments to avoid these issues will sacrifice 

homogeneity.  

In the literature there are a number of different segmentation approaches. Miaou and Lum 

(1993) suggested that short sections, less than or equal to 80 meters, could create bias in the 

estimation of linear models, but not when using Poisson models. Similarly, Ogle, Alluri and 



30  

Sarasua, (2011) demonstrated that short segment lengths, less than 160 meters, can lead to 

uncertain results in crash analyses. Cafiso and Di Silvestro (2011) showed that to increase 

performance in identifying correct positives as black spots, segment length should be related to 

AADT, with lower AADT values requiring longer segment lengths. Qin and Wellner (2012) 

studied the relationship between segmentation and safety screening analysis by using different 

lengths of sliding windows to identify hazardous sites, and they concluded that short segments, 

as well as those that are too long, create a bias in the identification of sites with safety problems.   

Some studies have focused on the relationship between crashes and road geometry in 

addressing segmentation. For example, Cenek et al. (1997) investigated this relationship for 

rural roads by using a fixed segment length of 200 meters. A similar study was done by Cafiso et 

al. (2008) using homogeneous sections with different lengths on a sample of Italian two-lane 

rural roads and aggregating variables related to curvature and roadside hazards. They concluded 

that models that contain geometry and design consistency variables are more reliable than those 

that do not. Other studies suggested different ways to aggregate segment data to avoid lengths 

that are too short. For example, Koorey (2009) proposed the aggregation of curves and tangents 

when the radius of curves exceeds a predetermined threshold value.   

The HSM (Manual, 2010) recommends the use of homogeneous segments with respect to 

AADT, number of lanes, curvature, presence of ramps at the interchanges, lane width, outside 

and inside shoulder widths, median width, and clear zone width. There is no prescribed 

minimum segment length for application of the predictive models, but there is the suggestion of 

a segment length of no less than 0.10 miles.   

Based on the literature, there is no exact value for the defining the length of a short 

section. The best segment length depends on the particular data set. Cafiso, D’Agostino and 

Persaud (2013) compared five different segmentation techniques with three different model 
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forms. The best results were obtained for the segmentation based on two curves and two 

tangents. Referring to Cafiso, D’Agostino and Persaud (2013), in this research, the two curve, 

two tangent segmentation technique was used. The minimum length of the segment was 0.15 

mile and the average length of each segment was approximately 1.78 mile. The roadway 

segment lengths were reasonable according to the HSM suggestion.  

4.2.3 Integrating Dynamic Variables  

It should be noted that weather conditions are regarded as dynamic factors. The team 

considered two types of road surface conditions, dry and wet, and two types of visibility 

conditions, good visibility and bad visibility.    

4.3 Data Description  

Fourteen variables were included in the initial analysis in an attempt to identify the 

important ones that affect crash frequency more significantly. All variables are described briefly 

below.  

4.3.1 Roadway Geometry  

Horizontal Alignment Variables: The data set included mileposts on the beginnings and 

ends of all horizontal curves. Each horizontal curve segment had information on the direction of 

curvature (left or right), curvature, length, and design speed. As a result, this information could 

be used to divide the roadway into two curves and two-tangent segments. Variables related to 

roadway geometry included the number of left directed curves, portion of the curve length, and 

average curvature of a segment.    

Vertical Alignment Variables: Within a segment, vertical alignment (e.g., grade) may 

change. As a result, to represent the grade percentage of horizontal segments, a length-weighted 

average grade value was used.  
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Roadway Features: Numerical variables related to roadway features included the number 

of lanes, median width,and  inner and outer shoulder widths (in the analysis direction). Similar to 

vertical alignment, roadway features may change within a horizontal segment. Therefore, a 

length-weighted average was used. For categorical variables, each of the roadway segments was 

represented by dominant lane surface type, dominant outer shoulder type, dominant inner 

shoulder type, and dominant median type. The categorical variable that had the highest length on 

a segment was considered to be the dominant type.  

4.3.2 Traffic Characteristics (AADT) 

The average AADT value on each roadway segment for years 2011 to 2014 was used. 

Again, a length-weighted average was used when a roadway segment was associated with more 

than one AADT value.  

4.3.3 Weather Related Variables  

Each crash record that was collected from WSDOT included road surface conditions 

during the crash. The team calculated the proportion of time a particular segment experienced 

wet or dry pavement and incorporated it in the data set.   

4.3.4 Crash Frequency 

Each crash is associated with a milepost. Therefore, the total number of crashes that 

occurred on each segment during the analysis period of 2011 to 2014 was determined and 

divided by four to calculate yearly crash frequency on each segment. For the years from 2011 to 

2014, crash data were extracted for road segments by severity (fatal, injury, and property damage 

only).   

Summary statistics of the numerical and categorical variables for the road segments are 

shown in table 4-1 and table 4-2, respectively. The data for crash frequency by severity for the 

road segments are shown in table 4-3.    
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Table 4-1: Summary statistics of numerical variables for Interstate freeway segments in Washington state for 

years 2011 – 2014 

  Roadway geometry     

  Notation  mean  Std. dev.  Median  min  max  

Segment length (mile)  LEN   1.78  1.56  1.35  0.15  1.56  

Inner Shoulder Width (ft)  ISW  3.80  2.64  4.00  0.00  15.26  

Outer Shoulder width (ft)  OSW  6.60  3.53  7.50  0.00  12.97  

Median Width (ft)  MWD  93.54  148.36  70.00  6.17  999.00  

Speed Limit (mph)  SPL  65.67  4.74  70.00  60.00  70.00  

 Grade (%)  GRD  0.67  2.22  0.11  0.00  36.24  

No. of left curve/Segment  HCD  1.32  0.61  1.00  0.00  2.00  
Length of the curve (%)  CUR   0.36  0.18  0.34  0.00  1.00  

Average Curvature  ACU   0.56  0.48  0.43  0.00  3.02  

  Traffic Characteristics     

AADT/Lane  APL  12239.28  8846.59  9600.00  2500.00  55000.00  

  Crash frequency     

Log(Normalized Crash 

Density)  
lnCR   2.17  1.65  2.32  -1.88  6.44  
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Table 4-2: Summary statistics of categorical variables for Interstate freeway segments in Washington state for years 

2011 – 2014 

Roadway geometry  

 Variable  Description  Notation  No. of segments  

Number of Lane 

(NOL)  

 

2 < NOL < 4  

 

NOL2  

 

653  

 NOL ≥ 4  NOL3   

Lane Surface Type  

Portland Cement Concrete  LSTPD  

 

 
(MST)  Others  MSTOD  

 

Speed Limit 

(SPL)  

≤ 60 mph  SPL1   

> 60 mph  SPL2  970  

 Weather Characteristics    

Road Surface Condition 

(RSC)  

Dry Non-

Dry  
RSCD 

RSCND  
802  

802  

  

  

Table 4-3 Data of crash frequency for Interstate freeway segments in Washington state for years 2011 – 2014 

Total 

crashes  
Fatal 

crashes  
Injury crashes  PDO crashes  Average crashes per year  

Number of road 

segments  

45270  129  13189  31952  11317.5  1604  

  

  

  

  

  

≤   2   

) LST (   Others (Asphalt)   LSTOD   718   

Outer Shoulder Type   
( OST )   

Asphalt   OSTAD   1434   

Others   OSTOD   170   

Median Surface Type   
Soil   MSTSD   1135   
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Chapter 5 Crash Frequency Model  

This chapter describes the use of regression models to fit best models to predict total 

crash frequency based on static and dynamic contributing factors. The proposed models were 

proven to have better goodness-of-fit than those found in the existing literature and to provide a 

better fit according to the assumptions of the regression model.  

5.1 Models for Predicting the Total Number of Crashes on Freeways  

Regression equations model the relationship between a dependent variable and a 

collection of independent variables. This relationship among the variables can be modelled as 

linear, nonlinear, and/or a combination of both functions. According to classical linear 

regression models, the expectation of crash frequency (or rate) is formulated as an ordinary least 

squares (OLS), which tries to minimize the error in model estimation. This model specification 

can be expressed as follows:   

𝐽 

 E(𝑦𝑖) = 𝜇𝑖 = 𝐿𝑖 ∗ ∑ 𝑥𝑖𝑗𝛽𝑗 + 𝛽0  (5.1)  
𝑗=1 

where 𝑦𝑖 denotes the crash frequency (or rate) along roadway segment 𝑖; (𝑦𝑖) or 𝜇𝑖 is the 

expected crash frequency (or rate: number of crashes per year in this study) along segment 𝑖 

during a certain time period; 𝐿𝑖 is the segment length in miles; 𝑥𝑖𝑗 is the 𝑗𝑡ℎ explanatory variable 

for segment 𝑖; 𝛽𝑗 is the corresponding coefficient for the 𝑗𝑡ℎ explanatory variable; and 𝐽 is the 

total number of explanatory variables considered in the model.  

In this research, crashes were divided into two groups on the basis of the road surface 

conditions dry and wet. Dry conditions were more common in the area and so are the number of 

crashes in such conditions. Therefore, the number of crashes needed to be normalized on the 

basis of the durations of dry and wet surface conditions. For this purpose, the proportion of time 
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a certain segment was wet or dry was found as follows in equations (5.2) and (5.3).  Weather 

data from Washington state airports stations were used.   

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑤𝑒𝑡, Pr(𝑅𝑆𝐶𝑊) =   

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 

(5.2)  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑎𝑑 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖 𝑏𝑒𝑖𝑛𝑔 𝑤𝑒𝑡, Pr(𝑅𝑆𝐶𝐷) = 1 − Pr(𝑅𝑆𝐶𝑊)  (5.3)  

   

Finally, to make road segments comparable, the logarithmic function of normalized crash 

density (e.g., normalized crash per mile-year) was considered as the dependent variable, as 

shown in equation (5.4). A very common method to handle the nonlinear relationship between 

the independent and dependent variables is logarithmic transformation of the variables in a 

regression model. Using the logarithm of one or more variables can capture the effective 

nonlinear relationship while preserving the linear model’s assumptions. To approximate highly 

skewed variables to normal distribution, logarithmic transformation is considered a convenient 

way (Benoit, 2011). The normalized expected crash density (𝐸𝐶𝐷) is expressed as follows:  

 (5.4) 

where Pr (𝑅𝑆𝐶𝑖) is the proportion of time a segment is dry/wet, 𝜇𝑖 is the crash density per year, 

and all other variables are explained previously. There are four main assumptions involved in 

using an OLS regression approach:  

1. Linearity and additivity of the relationship between dependent and independent 

variables:   

a. The expected value of the dependent variable is linearly related with the function of 

independent variable, holding the others fixed.  
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b. The slope of that line does not depend on the values of the other variables.  

c. The effects of different independent variables on the expected value of the dependent 

variable are additive. They are not linearly dependent on each other.  

2. Statistical independence of the errors   

3. Homoscedasticity (constant variance) of the errors  

4. Normality of the error distribution.  

After fitting each model, the team will go through testing each assumption to ensure it is not 

violated.  

5.2 Estimation Results  

To develop the best-fit statistical models, initially, we fitted simple statistical models 

including a single explanatory variable. Next, multiple explanatory variables were systematically 

added to the regression models. Explanatory variables in the regression model were used as both 

continuous and dummy variables. Furthermore, non-linear forms such as logarithmic, quadratic, 

etc. were tested. The models with the highest adjusted R-square, as well as the fewest number of 

significant variables, were considered to be the best models. Finally, the effect of one 

independent variable on a dependent variable as a function of a second independent variable was 

tested by introducing interaction variables. In addition, a multicollinearity test was conducted 

while including any independent variable to ensure the independence among variables.   

Table 5-1 shows the regression result for predicting total number of crashes. All the 

variables were statistically significant at a 0.1 significance level except for inner shoulder type 

and the interaction term of curve length and inner shoulder width. The adjusted 𝑅2 value of 0.75 

indicates that the model fit the data adequately.  

Table 5-1: Summary of regression models for predicting the total number of crashes 

Variables   Estimate  Std. Error  t-value  Pr(>|t|)  
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(Intercept)   2.96600  0.10130  

Numerical variable  

29.29100  0.00000  ***  

AADT/Lane   0.00005  0.00000  12.41300  0.00000  ***  

Inner shoulder width (ft)   -0.03034  0.01318  -2.30200  0.02147  *  

Median Width (ft)   0.00031  0.00015  2.08400  0.03730  *  

Absolute value of Grade   -0.08305  0.03341  

Categorical Variable  

-2.48600  0.01303  *  

No. of lane (1 if more than 4; 0 otherwise)  0.62940  0.08706  7.23000  0.00000  ***  

No. of lane (1 if more than 2 and less than 4; 0 

otherwise)  
0.17080  0.05540  3.08300  0.00208  **  

Outer shoulder type (1 if Asphalt; 0 otherwise)  -0.15220  0.08736  -1.74200  0.08168  .  

Inner shoulder type (1 if Asphalt; 0 otherwise)  -0.13680  0.08732  -1.56600  0.11750    
Lane Surface Type (1 if Portland cement; 0 

otherwise)  
-0.17220  0.04492  -3.83400  0.00013  ***  

Road Surface Condition (1 if Dry, 0 Non-Dry) Intera -2.98900 cting 

variables  
0.07004  -42.68200  0.00000  ***  

Length of the curve in a segment*outer shoulder  
0.18640  0.13020 

width (1 if less than 4 ft)  
1.43200  0.15242  

  

Road Surface Condition (1 if Dry, 0 Non-Dry)*  
 0.00007  0.00000  

AADT/Lane  
16.03800  0.00000  ***  

Number of observations  1604    

Adjusted 𝑅2  0.75    

  

5.3 Interpretation of Causal Effects  

As shown in table 5-1, a variety of variables were found to be significant determinants of 

crash frequency, and these variables were of plausible signs in terms of their tendency to 

increase or decrease crash density. Two numerical variable AADT/lane and median width 

showed positive relationships with the dependent variable (log transformed normalized crash 

density). Thus, the number of crashes increased with an increase in AADT/lane and median 

width, which supports the results of previous research in this field (e.g., Qin, Ivan and 

Ravishanker, 2004; Kononov, Bailey and Allery, 2008).   

The negative sign for the inner shoulder variable demonstrates a reduction of crashes 

associated with an increase in shoulder width. Hadi et al. (1995) and Stamatiadis (2009) also 
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concluded that wider shoulder width is relatively safer. This is consistent with the fact that 

drivers have more room to take corrective actions after making an errant maneuver. It is also 

apparent that drivers are more apt to encounter roadside obstacles with reduced widths (Milton 

and Mannering, 1998). Similarly, asphalt paved inner and outer shoulders reduce the total 

number of crashes. This finding is consistent with previous research. The shoulder material, and 

thus the surface condition, has significant impact on the recovery of an errant driver leaving the 

travel lane.   

The negative sign for rigid pavement type indicates that rigid pavements are relatively 

safer. Rigid pavements are more skid resistant, which offers more friction against uncontrolled 

maneuvers.   

The two indicator variables on the number of lanes in a section were highly significant, 

with a positive coefficient. This indicates that crash frequency increases as the number of lanes 

increases from two lanes. As such, roadways with two lanes per direction are safer. According to 

Milton and Mannering (1998) this variable is likely to act as a proxy for limited access control 

and ramp merging, which are the indicators of a higher number of lane changing, passing, 

passing/turning, and merging activities. Those could lead to the difficulty of visually 

determining following vehicles in an adjacent lane (Sen, Smith and Najm, 2003).   

The product of a curved length in a road segment with outer shoulder width has a 

positive coefficient. So, a curve segment with narrower outer shoulders is more likely to cause 

crashes. In curves, vehicles have a tendency to move away from the road. Curved road segments 

with wider outer shoulders offer drivers more room to be safe as the tendency is to leave the 

roadway. This finding is also consistent with findings of Easa and You (2009) and Bauer and 

Harwood (2013).  
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Finally, wet road surfaces are more prone to crashes than dry surfaces. Wet surfaces are 

associated with precipitation. According to Brodsky and Hakkert (1988) reduced visibility 

during precipitation, glare from reflecting light from wet surfaces, splashing water from other 

vehicles, and clouded windows as a result of high humidity are some causes that lead to crashes.  

5. 4. Regression Diagnostics: Testing the Assumptions  

This section describes analysis of all assumptions of an OLS linear regression to find out 

whether they were met or violated. Residual analysis is used to test the assumptions of constant 

variance and the independence of variables and normality of the distribution. In addition, error 

terms need to be independent and identically distributed. A random distribution of residuals 

around zero indicates that these assumption are not violated. Figure 5-1 shows that residuals 

were normally distributed with a mean of zero, thereby satisfying the assumptions of OLS 

estimation.  

 

To examine the homoscedasticity of the regression model, the residuals were plotted 

against fitted values. Plotting residuals versus the value of a fitted response should produce a 

  

Figure 5-1 - 
 

          Histogram of residuals   
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distribution of points scattered randomly around zero, regardless of the size of the fitted value. 

The residual plot in figure 5-2 shows a fairly random pattern around zero. This random pattern 

indicates that the proposed model provided an appropriate fit to the data.   

 

A randomly varied scatterplot of the standardized residuals against each of the 

independent variables also confirms the homoscedasticity of the regression model. The team 

plotted the residuals against all independent variables and found a non-systematic pattern. For 

instance, figure 5-3 shows residuals vs AADT/lane where the residuals appear on the 𝑦-axis and 

the predictor AADT/lane appear on the 𝑥-axis. The residuals are randomly scattered along the 

zero value.  

  

 -           Figure 5-2 Residuals vs fitted plot   
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Figure 5-3 Residuals vs independent variables AADT/lane  

The comparison of the expected number of total crashes and the observed number of 

crashes is shown in figure 5-4. A well fitted model should produce a slope close to 1.0 with 0.0 

intercept.  

The proposed model yielded an intercept of 0.91.     
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Figure 5-4 Fitted vs actual value  

In the figure, all points do not lie on the optimum line because the number of observed 

accidents cannot be predicted with 100 percent accuracy using the selected indicator variables. It 

is likely that this variability can be reduced by using additional indicator variables. It should be 

noted that variables describing driver characteristics were not considered in the model. 

However, the results of the analyses indicated that the assumptions of OLS regression were not 

violated, and the proposed model adequately predicted the total number of crashes on each 

segment.   
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Chapter 6 Two-Stage Model for Predicting Crash Frequency by Severity  

Using a combination of generalized linear regression and logit estimation techniques, 

this work modeled correlated traffic crash counts at different levels of severity. First, two 

logistic models were fitted, one for property damage only and one for injury-fatal crashes. The 

role of these logistic models is to predict the probability of having one or more crashes of a 

certain severity. Then generalized linear regression models were used to predict the number of 

PDO and IF crashes within each group. Details of the approach follow.  

6.1 Models for Predicting the Number of Crashes by Severities on Freeways  

Log-transformed linear regression models cannot predict the frequency of zero. 

Therefore, the research team incorporated a logistic regression model to tackle this problem. In 

order to get the total crash counts by severity level, the estimated PDO and IF crash densities 

from the regression models were used with corresponding logistic regressions, as shown in 

equations (6.1) and (6.2):  

Estimated PDO crash density    

E (𝑃𝐷𝑂𝑖) = Pr(𝑌𝑃𝐷𝑂𝑖 = 0) ∗ 0 + Pr(𝑌𝑃𝐷𝑂𝑖 = 1) ∗ 𝐸(𝑃𝐷𝑂𝑖 |𝑌𝑃𝐷𝑂𝑖 = 1)  (6.1)  

Estimated Injury-fatal(IF) crash density    

 E (𝐼𝐹𝑖) = Pr(𝑌𝐼𝐹𝑖 = 0) ∗ 0 + Pr(𝑌𝐼𝐹𝑖 = 1) ∗ 𝐸(𝐼𝐹𝑖 |𝑌𝐼𝐹𝑖 = 1)  (6.2)  

where 𝐸(𝑃𝐷𝑂𝑖 |𝑌𝑃𝐷𝑂𝑖 = 1) is the expected PDO crash density (number per mile-year) on 

segment 𝑖 given there was at least one PDO crash on the segment. Note that (𝐼𝐹𝑖 |𝑌𝐼𝐹𝑖 = 1) is 
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defined in the same way. Furthermore, Pr(𝑌𝑃𝐷𝑂𝑖 = 1) and Pr(𝑌𝐼𝐹𝑖 = 1) respectively denote the 

probability of having at least one PDO and IF crash on the segment.  

6.1.1 Logistic Regression Models for Predicting the Probability of Severity Events  

In this research, logistic regression models were used to predict the probability of an 

event occurrence (i.e., PDO and injury-fatal). The basic idea is similar to a Bernoulli probability 

that governs the binary outcome of whether a variate has a zero or positive realization. If the 

realization is positive, we multiply this realization by the outcome from the regression model to 

get expected value. Two logistic models were fitted to predict the probability of PDO and 

injury-fatal occurrence.  

Let 𝑌𝑆 represent the response variable of severity type 𝑆 (𝑆 can take on PDO or IF types), 

whereas contributing factors for road conditions, traffic characteristics, and weather conditions 

are denoted by xij (j=1, 2, …, J), where 𝑖 represents the segment and 𝑗 denotes the number of 

independent variables. The expression of Y is defined as below:  

  

When the response categories 1 or 0 are unordered, 𝑌𝑆𝑖 is related to independent variables 

through a set of baseline category logits as shown below: 

 (6.3)  
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Or,  
𝐽 

 (6.4) 

6.1.2 Regression Models for Predicting Crash Frequency by Severity  

The basics of these crash count by severities models are similar to those in Section 5.1. 

We fitted two regression models (crash count for PDO and IF). The expected logarithmic 

normalized PDO and IF crash densities in a segment 𝑖 are expressed as follows:  

  (6.5)  

 

 (6.6)  

 

where, 𝜇𝑃𝐷𝑂𝑖 and 𝜇𝐼𝐹𝑖 are the expected PDO and IF crash density (number of crashes per mile-

year) of a segment 𝑖.  

6.2 Model Estimation and Diagnosis  

6.2.1. Logistic Model for PDO 

This section presents a fitted logistic regression model for predicting the probability of 

having at least one PDO crash on a segment. Table 6-1 shows the summary of the logistic model 

for PDO crashes. All the variables were statistically significant. The 𝜌2 value of 0.41 indicates 
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that the model fit the data adequately. This logistic model included linear, nonlinear, categorical 

and interacting variables.  

Table 6-1 Summary of the logit model for predicting the probability of PDO crash occurrence 

Variables  Estimate  Std. Error  t-value  Pr(>|t|)  

 (Intercept)  -1.77400  0.31960  -5.551  0.000000  ***  

Numerical variable  

AADT/Lane  0.00027  0.00002  13.92  0.000000  ***  

Inner Shoulder Width  0.14890  0.04641  3.209  0.001334  **  

Curved portion in a segment  -2.73000  0.28600  -9.545  0.000000  ***  

No of left directed curve in a segment  -0.61500  0.09104  -6.755  0.000000  ***  

Absolute value of Grade  0.47370  0.07644  6.197  0.000000  ***  

 
Categorical Variable     

No. of lane (1 if more than 4; 0 otherwise)  1.22800  0.33790  3.635  0.000278  ***  

No. of lane (1 if more than 2 and less than 4; 0 

otherwise)  1.30800  0.17370  7.532  0.000000  ***  

Inner Shoulder Type (1 if Asphalt, 0 otherwise)  -1.87700  0.25940  -7.234  0.000000  ***  

Outer Shoulder Type (1 if Asphalt, 0 otherwise)  1.60700  0.26820  5.992  0.000000  ***  

Road Surface Condition (1 if Dry, 0 Non-Dry)  0.49920  0.23080  2.163  0.030552  *  

Interacting variables     

Road Surface Condition (1 if Dry, 0 Non-Dry)*  
 0.00009  0.00004  

AADT/Lane  
2.373  0.017650  *  

Number of observations  1604  

𝜌2  0.41  

  

6.2.2. Regression Model for PDO  

This section presents the best regression model for estimating logarithmic normalized 

PDO crash density. Table 6-2 shows the regression results for predicting log-transformed, 
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normalized PDO density. All the variables were statistically significant with a 95 percent 

confidence level. The adjusted 𝑅2 value of 0.76 indicates that the model fit the data adequately. 

This regression model included linear, nonlinear, categorical, and interacting variables.  

Table 6-2: Summary of regression model for predicting log-transformed, normalized PDO density 

Variables  Estimate  Std. Error  t-value  Pr(>|t|)  

(Intercept)  2.48700 

Numerical variable  
0.12280  20.246  2.00E-16  ***  

AADT/Lane  15.82000  1.34700  11.742  2.00E-16  ***  

𝐴𝐴𝐷𝑇/𝐿𝑎𝑛𝑒2  -4.24900  0.92630  -4.587  4.86E-06  ***  

 Number of Lane  0.23710  0.04012  5.911  4.17E-09  ***  

Inner shoulder width (ft)   -0.03387  0.01225  -2.764  0.00579  **  

Median Width (ft)   0.00042  0.00016  2.633  0.00856  **  

Curved portion in a segment   0.25250  0.12080  2.09  0.0368  *  

Absolute value of Grade   -0.10260  0.03408  -3.011  0.00265  **  

 
Categorical Variable     

Lane Surface Type (1 if Asphalt cement; 0 

otherwise)  
-0.75510  0.31690  -2.383  0.01729  *  

Inner Shoulder Type (1 if Asphalt, 0 otherwise)  -0.17740  0.07417  -2.392  0.01688  *  

Road Surface Condition (1 if Dry, 0 Non-Dry)  -3.04100  0.07222  -42.107  2.00E-16  ***  

Interacting variables     

Road Surface Condition (1 if Dry, 0 Non-Dry)*  
 0.00007  0.00000  

AADT/Lane  
15.842  2.00E-16  ***  

Number of observations  1562  

𝑅2  0.76  
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The team tested all the assumptions of OLS regression models. Residuals were found to 

be normally distributed with a mean of zero. Both residuals against fitted value and residuals 

against independent variables plots showed a random pattern around zero. The residuals fell in a 

symmetric pattern and had a constant spread throughout the range. Finally, the adjusted 𝑅2 of the 

actual vs fitted value plot was 0.79 with a slope 0.8 and 0.0 intercept. Figure 6-1 shows the 

diagnosis of the regression model.   

 
  

 

Figure 6-1 Model diagnosis of regression model for log-transformed, normalized PDO density 

  
  

( a) Histogram of the residuals   

  

( b) Residual vs predicted value   

  

( c) Resid uals vs AADT/Lane   

  

( d) Predicted vs actual value   
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6.2.3. Logistic Model for IF Crashes  

Table 6-3 summarizes the estimation of the logistic model for the estimation of the 

probability of IF crashes. Like the previous models, all the variables listed here were statistically 

significant. The model yielded a 𝜌2 value of 0.2 and included linear, nonlinear, categorical, and 

interacting variables.  

Table 6-3 Summary of the logit model for predicting the probability of IF crash occurrence 

Variables  Estimate  Std. Error  t-value  Pr(>|t|)  

(Intercept)  -0.69680 
Numerical variable 

0.26510  -2.628  0.00859  **  

AADT/Lane  35.07000  3.27000  1.07E+01  0.00000  ***  

 𝐴𝐴𝐷𝑇/𝐿𝑎𝑛𝑒2  -8.45500  2.42500  -3.486  0.00049  ***  

Inner shoulder width (ft)  -0.12810  0.02534  -5.057  0.00000  ***  

Logarithm of Median Width (ft)  0.30570  0.07035  4.346  0.00001  ***  

Curved portion in a segment  -1.63400  0.26060  -6.269  0.00000  ***  

Absolute value of Grade  0.34090  0.07063  4.827  0.00000  ***  

Categorical Variable  

No. of lane (1 if more than 4; 0 otherwise)  1.27600  0.22220  5.74  0.00000  ***  

No. of lane (1 if more than 2 and less than 4; 0  
 otherwise)  0.89420  0.11500  7.774  0.00000  ***  

Outer Shoulder Width (1 if greater than or equal  
10 ft, 0 otherwise)  -0.21100  0.10030  -2.104  0.03534  *  

Inner Shoulder Type (1 if Portland cement; 0 

otherwise)  0.63340  0.30290  2.091  0.03651  *  

Road Surface Condition (1 if Dry, 0 Non-Dry)  0.00003  0.00002  1.876  0.06067  .  

Interacting variables  

Road Surface Condition (1 if Dry, 0 Non-Dry)*  
AADT/Lane  

0.00007  0.00001  14.113  0.00000  ***  

Number of observations  
  

1604  
 

𝜌2  
  

0.2   
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6.2.4. Regression Model for IF Crashes 

Table 6-4 summarizes the regression model for predicting the number of IF crashes. All 

the variables were statistically significant at a 90 percent confidence level. The value of adjusted 

𝑅2 was 0.71. This model included linear, categorical, and interaction variables.  

Table 6-4 Summary of regression model for predicting log-transformed, normalized IF density 

Variables  Estimate  Std. Error  t-value  Pr(>|t|)  

(Intercept)  1.76400 
Numerical variable  

0.12540  14.072  0.00000  ***  

AADT/Lane  0.00004  0.00000  9.931  0.00000  ***  

Inner shoulder width (ft)  -0.04083  0.01021  -3.999  0.00007  ***  

Outer Shoulder width (ft)  -0.00911  0.00735  -1.239  0.09537    

Median Width (ft)  0.00037  0.00017  2.17  0.03017  *  

Curved portion in a segment  0.40440  0.13670  2.959  0.00314  **  

Absolute value of Grade  -0.07148  0.03818  -1.872  0.06137  .  

Categorical Variable  

No. of lane (1 if greater than 2 and less than 4; 0 

otherwise)  
0.09238  0.05781  1.598  0.10027    

 No. of lane (1 if greater than 4; 0 otherwise)  0.63150  0.09033  6.991  0.00000  ***  
Lane Surface Type (1 if Portland cement; 0  

 -0.21180  0.05270  
otherwise)  

-4.019  0.00006  ***  

Outer Shoulder Type (1 if Asphalt, 0 otherwise)  -0.13910  0.08443  -1.647  0.09974  .  

 Road Surface Condition (1 if Dry, 0 Non-Dry)  -2.98900  0.08336  -35.859  0.00000  ***  

Interacting variables     

Road Surface Condition (1 if Dry, 0 Non-Dry)*  
 0.00008  0.00001  

AADT/Lane  
14.319  0.00000  ***  

Number of observations  1404  

𝑅2  0.71  

  

The team diagnosed the regression model in the same way as previous models.  Residual 

diagnosis and actual vs fitted plots showed that assumptions were not violated. Figure 6-2 
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summarizes the results of all the diagnosis tests. The adjusted 𝑅2 of the actual vs fitted value plot 

was 0.79 with a slope of 0.8 and 0.0 intercept.  

 
  

 

Figure 6-2 Model diagnosis of the regression model for log-transformed, normalized injury-fatality (IF) density 

6.3 Interpretation of the Causal Effects of the Two-Stage Model  

6.3.1. Logistic Model for PDO and Injury-Fatal (IF) Crashes  

The probability of both PDO and IF occurrence increases with increases in traffic 

volume. However, above a certain traffic volume level, the probability of IF crashes occurring 

drops as the term (𝐴𝐴𝐷𝑇⁄𝐿𝑎𝑛𝑒)2 dominates 𝐴𝐴𝐷𝑇⁄𝐿𝑎𝑛𝑒. This outcome is logical, as with high 

  
  

( a) Histogram of the residuals   

  

( b) Residual vs predicted value   

  

( c) Residuals vs AADT/Lane   

  

( d) Predicted vs actual value   
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volume levels, vehicles are forced to follow each other closely, which contributes to an increase 

in the probability of minor and mostly PDO rear-end crashes. Increasing the volume level also 

reduces lane changing and overtaking maneuvers, actions that can lead to severe crashes. 

Therefore, the probability of IF crashes occurring decreases as traffic volumes increase.   

The probabilities of PDO and IF crashes occuring increase as the number of lanes 

increases. This is as expected. A larger number of lanes is an indicator of merging and weaving 

activities with more lane changes.   

Crashes are likely to be more severe on road segments with narrow shoulders. Narrow 

shoulders provide drivers with less room and time to correct a mistake, which can lead to severe 

crashes. Curvature and grades also increase the probability of PDO and IF crashes occurring as 

curves and grades restrict visibility and the sight distance of drivers.   

6.3.2. Regression Model for PDO and Injury-Fatal (IF) Crashes  

The model showed that PDO and IF crash frequency increases as AADT/lane, number of 

lanes, and median width increase. Road segments with a relatively higher proportion of curved 

lengths are more prone to both PDO and IF crashes. Factors contributing to crashes on curved 

segments often include loss of control or misjudging a curve. This type of crash results in a 

vehicle striking a fixed object or rollovers.   

Wider inner and outer shoulder width reduce the risk of both PDO and IF crashes. Wide 

shoulders offer recovery measures to an errant driver going out of the travel lane. Both PDO and 

IF frequencies depend on the absolute value of the gradient of the road segments.   

The model indicated that asphalt paved shoulders are safer. Finally, both PDO and IF 

crashes are more likely to happen on wet road surface conditions.    
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Chapter 7 Crash Counts by Severity-Based HSID Method  

This chapter describes the development of a crash count by severity-based hotspot 

identification (CCS-based HSID) method by employing the frequency estimation and binary 

logistic regression approaches discussed in previous chapters. First, a binary logistic model was 

fitted to predict the probability of a PDO or injury/fatal crash occurring on the basis of the 

explanatory variables. Then, PDO and injury-fatal crashes were modeled separately to predict 

their frequency. A new safety performance index and a new potential safety improvement index 

were developed and compared with traditional ones by employing HSID evaluation methods.  

7.1 Safety Performance Index  

In order to develop a new safety performance index that can reflect crash counts by 

severity level, the estimated PDO and IF crash densities from the generalized nonlinear models 

were  employed with corresponding logistic regressions to estimate expected crash densities 

according to severity type on a roadway segment i, as shown below:  

1. Estimated PDO crash density:  

𝑁𝑃𝐷𝑂𝑖 = (𝑃𝐷𝑂𝑖 |𝑌𝑃𝐷𝑂𝑖 = 1) ∗ Pr(𝑌𝑃𝐷𝑂𝑖 = 1) 

 (7.1) 

2. Estimated IF crash density:  

𝑁𝐼𝐹𝑖 = (𝐼𝐹𝑖 |𝑌𝐼𝐹𝑖 = 1) ∗ Pr(𝑌𝐼𝐹𝑖 = 1) 

 (7.2)  
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where, 𝑁𝑃𝐷𝑂𝑖 and 𝑁𝐼𝐹𝑖 are the estimated number of PDO and IF crashes per mile per year, 

respectively. If equations (7.1) and (7.2) are multiplied by the length of the segment 𝑖, then the 

total estimated number of crashes in a segment is found.  

Based on equations (7.1) and (7.2), the equivalent property damage only crash frequency 

measure was modified and employed to assign weight to crashes according to their severity 

(fatal, injury, and PDO) to develop a combined crash density and severity score (CCDSS) for 

each site (Washington et al., 2014). The weight factors were based on PDO crash costs. An 

EPDO value summarized the crash costs and severity. In the calculations, weight factors were 

assessed from the crash cost estimates developed by WSDOT in the Annual Collision Data 

Summary Reports (2011-2014). Using average crash costs for motorways, fatal crashes 

($2,227,851) had a weight factor equal to 981, injury crashes ($20,439) had a weight factor 

equal to 9, and PDO crashes ($2,271) had a weight factor equal to 1. However, if only the 

average crash costs were considered to be the weight factor, then inconsistencies could occur 

when the HSID methods were evaluated in different time periods, since the traditional EPDO 

method over-emphasizes sites with a low frequency of fatal or severe crashes (Montella, 2010). 

As a result, a risk weight factor was developed in this research by combining the average crash 

cost with the corresponding probability for each type of crash severity. Let 𝐹𝑤 denote the fatality 

risk weight factor, 𝐼𝑤 denote the injury risk weight factor, and Pw, the PDO risk weight factor as 

follows:   

 (7.3) 
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 where cF =$2,227,851 , cI =$20,439 , and cP = $2,271 are the average costs for fatal, injury, and 

PDO crashes, respectively; 𝜂F , 𝜂I , and 𝜂P are the probabilities of occurrence for fatal, injury, and 

PDO crashes, respectively. In this research, we considered using the proportion of the crash 

frequency for each type of severity based on the collected crash data of 21,396 road segments 

along I-5, I-90, I-82, I-182, I-205, I-405 and I-705 in Washington to represent the probability of 

crash occurrence for each severity level in this area. Based on the crash counts in table 4-3, we 

can calculate the following:   

 𝜂𝐼 = 0.291,   

 𝜂𝐹 = 0.003, and   

 𝜂𝑃 = 0.706  

The values of the risk weight factors were obtained by employing equation (7.2) as 𝐹𝑤 = 

4.169, 𝐼𝑤 = 3.709 and 𝑃𝑤 = 1.  As we analyzed injury and fatal crashes together, we calculated 

the injury-fatality risk weight factor based on the equation given below:  

 𝐼𝐹𝑤  𝑅𝐹  (7.4)  

Here, 𝑅𝐼 and 𝑅𝐹 denote ratio of the injury and fatal crashes with respect to total injury-

fatal crash, respectively. The calculated value of 𝐼𝐹𝑊 = 3.72.  

Based on the preceding analysis, the expected CCDSS (ECCDSS) for roadway 

segment i can be defined as:  

 𝐸𝐶𝐶𝐷𝑆𝑆𝑖 = 𝐸𝑃𝐷𝑂𝑖. 𝑃𝑤 + 𝐸𝑃𝐷𝑂𝑖. 𝐼𝐹𝑤,          𝑖 = 1, 2, … … , 𝑛  (7.5)  

  

Equation (7.5) is regarded as the safety performance function (SPF). In fact, the 

ECCDSS is an extension of the expected crash density based on the two-stage regression and 

logistic models.   
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The EB method is a statistical method that combines the observed crash frequency with 

the predicted crash frequency using the SPF to calculate the expected crash frequency for a site 

of interest. The EB method pulls the crash count towards the mean, accounting for the regression 

to the mean (RTM) bias. A lot of studies have proved that the EB approach is the most 

consistent and reliable method for identifying sites with promise (Cheng and Washington, 2008; 

Montella, 2010). In this research, the EB method was employed to develop the new SPI as 

shown in the following:  

 SPIi =𝜆iECCDSSi + (1 - 𝜆i )OCCDSSi, i =1,2, , ,n  (7.6)  

 where OCCDSSi is the observed combined crash density and severity score (OCCDSS) for 

roadway segment i and is defined as below:  

𝑂𝐶𝐶𝐷𝑆𝑆𝑖 = 𝜎𝑃𝐷𝑂𝑖. 𝑃𝑤 + 𝜎𝐼𝐹𝑖. 𝐼𝐹𝑤  (7.7)  

    

where 𝜎𝑃𝐷𝑂𝑖 and 𝜎𝐼𝐹𝑖 are the observed PDO and injury-fatal crash density along segment i 

during a certain time period respectively; 𝜆i is a weighting factor that is calculated through the 

following equation:  

 (7.8)  

where 𝛼i is the over-dispersion parameter, which is a constant for a given model and is derived 

during the regression calibration process.  

7.2 Potential Safety Improvement Index  

The PSII was developed as the difference between the SPI and the ECCDSS, as follows:  
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 PSIIi = 𝜆iECCDSSi + (1 - 𝜆i )OCCDSSi - ECCDSSi = SPIi  - ECCDSSi, i =1,2, , ,n  (7.9)  

When the potential safety improvement index value is greater than zero, a site 

experiences a higher combined frequency and severity score than expected. When the potential 

safety improvement index value is less than zero, a site experiences a lower combined frequency 

and severity score than expected.   

7.3 Evaluation Tests of Performance of HSID Methods  

In order to demonstrate the effectiveness of the SPI and PSII as developed in this 

research, they were compared with three other models that were developed in this research. All 

these five regression models are given below:  

Table 7-1 Description of different HSID methods 

Model   Description  

I  𝜇𝑇𝑜𝑡𝑎𝑙𝑖 = 𝜇𝑃𝐷𝑂𝑖 + 𝜇𝐼𝐹𝑖   

II  𝑁𝑇𝑜𝑡𝑎𝑙𝑖 = 𝐸𝑃𝐷𝑂𝑖 + 𝐸𝐼𝐹𝑖    

SPF  𝑆𝑃𝐹𝑖 = 𝐸𝑃𝐷𝑂𝑖. 𝑃𝑤 + 𝐸𝐼𝐹𝑖. 𝐼𝐹𝑤   

 SPIi = 𝜆iECCDSSi = (1- 𝜆i )OCCDSSi, i =1,2, , ,n  

where, 𝐸𝐶𝐶𝐷𝑆𝑆𝑖 = 𝐸𝑃𝐷𝑂𝑖𝑃𝑤 + 𝐸𝐼𝐹𝑖𝐼𝐹𝑤,          𝑖 = 1, 2, … … , 𝑛  

 SPI  𝑂𝐶𝐶𝐷𝑆𝑆𝑖 = 𝜎𝑃𝐷𝑂𝑃𝑤 + 𝜎𝐼𝐹𝐼𝐹𝑤  

 𝜆i = 1  

1+𝛼iECCDSSi 

 PSII  PSIIi =𝜆iECCDSSi + (1 - 𝜆i )OCCDSSi - ECCDSSi = SPIi - ECCDSSi, i =1,2, , ,n  

  

Cheng and Washington (2008) developed four new evaluation tests for HSID. In this 

research, the site consistency test, method consistency test, total rank differences test, and the 

total score test were employed to evaluate the effectiveness of the developed safety performance 

indexes and reference performance indexes.   
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The evaluation experiment used the following procedure, which closely mimicked how 

reactive safety management programs are conducted in practice:  

1. For the purpose of comparing alternative HSID approaches, the four-year accident data 

were separated into two periods, Period 1 (years 2011-2012) and Period 2 (years 2013-

2014).  

2. For each HSID method, road sections were sorted in descending order of estimated 

safety (note that the four HSID methods rank sites according to different criteria).  

3. Sections with the highest rankings were flagged as hotspots (in practice these sites would 

be further scrutinized). Typically, a threshold is assigned according to safety funds 

available for improvement, such as the top 10 percent of sites. In this evaluation, both the 

top 10 percent and 20 percent of the locations are used as experimental values.  

7.3.1 Site Consistency Test   

The site consistency test (SCT) measures the ability of an HSID method to consistently 

identify a high-risk site over repeated observation periods. The test rests on the premise that a 

site identified as high risk during time period 𝑡 should also reveal an inferior safety performance 

in a subsequent time period 𝑡 + 1, given that the site is in fact high risk and no significant 

changes have occurred at the site. The method that identifies sites in a future period with the 

highest crash frequency is the most consistent. In this research, the SPI developed above was 

employed as the safety performance criterion in the subsequent time period. The test statistic 

was given as:  

  (7.10)  
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where h is the HSID method index being compared; n is the total number of roadway segments, 

𝛾 is the threshold of identified hotspots (e.g., 𝛾 = 0.01 corresponds with top 1 percent of n 

roadway segments identified as hotspots, and n𝛾 is the number of identified hotspots).  

  
Table 7-2 Results of site consistency test of various HSID methods 

HSID  
Metho 

d  
Index  

(h)  

HSID  
Method  
Name  

 𝛾 = 0.1    𝛾 = 0.2   

SCTh t,  

Period 1  
(2011-2012)  

SCTh t, 1  

Period 2  
(2013-2014)  

% of 

change  

SCTh t,  

Period 1  
(2011-2012)  

SCTh t, 1  

Period 2  
(2013-2014)  

% of 

change  

1  Model-I  14813.9  14569.5  1.65  21811.27  20871  4.31  

2  Model-II  14607.4  16872.83  15.51  21809.46  24362.4  11.71  

3  SPF  14942.3  16880  12.97  21987.9  24296  10.50  

4  SPI  17643.4  20366.2  15.43  22995.72  27053.79  17.65  

5  PSII  15640.02  18364.65  17.42  20439.81  23377.68  14.37  

 

The site consistency test results, as shown in table 7-2, indicated that Model-I 

outperformed other HSID methods in identifying both the top 10 percent and 20 percent of 

segments. Model-I was more consistent, as the 𝑆𝐶𝑇 value changed 1.65 percent from Period 1 to 

Period 2 for 𝛾 = 0.1 and changed 4.31 percent from Period 1 to 2 for 𝛾 = 0.2.   

7.3.2 Method Consistency Test   

The method consistency test (MCT) evaluates a method’s performance by measuring the 

number of the same hotspots identified in both time periods. It is assumed that road sections are 

in the same or similar underlying operational state and their expected safety performance 

remains virtually unaltered over the two analysis periods. With this assumption of homogeneity, 

the greater the number of hotspots identified in both periods, the more consistent the 

performance of the HSID method. The test statistic is given as:  
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 (7.11)  

where only segments {sn-n𝛾+1, sn-n𝛾,…,sn} identified in the top threshold 𝛾 are compared.  

Table 7-3 shows the number of similarly identified hotspots identified by alternative HSID 

methods over the two periods. The SPF method was superior in this test by identifying the 

largest number of the same hotspots in both cases of 𝛾 = 0.1 and 𝛾 = 0.2, with 87 percent and 88 

percent matched hotspots, respectively. The SPF method identified 144 segments in 2011-2012 

that were also identified as hotspots in 2013-2014 for 𝛾 = 0.1. Model-II and the SPI method 

were the second and third best models in terms of site consistency. Table 7-3 shows the result of 

the consistency test of all five HSID methods.  

Table 7-3 Results of method consistency test of various HSID methods 

HSID Method  

Index  

(h)  

HSID Method 

Name  

𝛾 = 0.1  

(166 sites)  

𝛾 = 0.2  

(332 sites)  

1  Model-I  106 (64%)  195 (59%)  

2  Model-II  140 (84%)  289 (87%)  

3  SPF  144 (87%)  291 (88%)  

4  SPI  133 (80%)  286 (86%)  

5  PSII  119 (72%)  232 (70%)  

  

7.3.3 Total Rank Differences Test  

The total rank differences test (TRDT) takes into account the safety performance 

rankings of the road sections in the two periods. The test is conducted by calculating the sum of 

the total rank differences of the hotspots identified across the two periods. The smaller the total 

rank difference, the more consistent the HSID method. The test statistic is given as:  
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  (7.12)  

 

where R q( h t, ) is the rank of segment q in period t for method h. The difference in ranks is 

summed over all identified segments for threshold level 𝛾 for period t. Table 7-4 illustrates that 

the PSII method was superior in the total rank differences test. In both the 𝛾 = 0.1 and 𝛾 = 0.2 

cases, the PSII method had significantly smaller summed ranked differences, by 11.4 percent 

and 14.2 percent, in comparison to the SPI method. This result suggests that the PSII method is 

the best HSID method for ranking roadway segments consistently from period to period.  

Table 7-4 Results of total rank differences test of various HSID methods 

HSID Method  

Index  

(h)  

HSID Method 

Name  

𝛾 = 0.1  

(166 sites)  

𝛾 = 0.2  

(332 sites)  

1  Model-I  98913  207720  

2  Model-II  96196  196200  

3  SPF  103648  211727  

4  SPI  107826  213520  

5  PSII  95510  183202  

  

7.3.4 Total Score Test  

The total score test (TST) combines the site consistency test, the method consistency test, 

and the total rank difference test in order to provide a synthetic index. The test statistic is given 

as:  

(7.13)   
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where the test assumes that the SCT, MCT, and TRDT have the same weight. The former three 

tests provide absolute measures of effectiveness, whereas the total score test gives an 

effectiveness measure relative to the methods being compared. If method h performed best in all 

of the previous tests, the TST value would be equal to 100. If method h performed worst in all of 

the tests, the TST value would be positive since all three components of the test had a positive 

value.  

Indeed, SCT and MCT, which should be maximized by the HSID methods, are weighted 

in relation to the maximum values in the tests, whereas TRDT, which should be minimized by 

the HSID methods, is weighted in relation to its difference from the minimum value in the test. 

Table 7-5 illustrates the results of the total score test of the five HSID methods, in which SPI 

performed best in both the 𝛾 = 0.1 and 𝛾 = 0.2 cases and was followed closely by the Model-II 

method. The SPI method has a score of 93.64 and 98.37 for 𝛾 = 0.1 and 𝛾 = 0.2, respectively.  

Table 7-5 Results of total score test of various HSID methods 

HSID Method  
Index  

(h)  
HSID Method Name  

𝛾 = 0.1  
(166 sites)  

𝛾 = 0.2  
(332 sites)  

1  Model-I  80.66  80.39  

2  Model-II  93.14  97.73  

3  SPF  91.77  95.45  

4  SPI  93.64  98.37  

5  PSII  90.93  91.89  

  

Overall, the total score tests revealed that the SPI method is the most consistent and reliable 

method for identifying hotspots. Although it can only be applied to roadway segments where the 

crash data for different levels of severity are available, with the rapid development of intelligent 
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transportation systems and data collection technologies, this method could become quite useful 

in identifying high-risk road sites. The performance of Model-II was also relatively better than 

PSII, SPF, and Model-I. This evaluation suggests that the SPI method and Model-II (of the 

methods compared) have the potential to become the industry standard.  
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Chapter 8 Generalized Nonlinear Model for Incident Prediction  

This chapter describes the use of regression models to fit generalized nonlinear models to 

predict crash frequency by severity based on static and dynamic contributing factors. The 

proposed incident prediction functions were used to distinguish different crash severity types. 

The proposed models were proven to have better goodness-of-fit than those found in the existing 

literature and to provide a better fit for different incident severity types. In this effort, we used a 

different roadway segmentation technique. So this chapter introduces the data set first, then 

describes the generalized nonlinear models. Note that unlike the two-stage regression-logistic 

models, no weight was given for different road surface conditions.  

8.1 Data Description  

In this effort, segmentation of the roadways based on curvature was employed, i.e., a 

new segment started when a tangent section transitioned into a curve. Thus, the segment lengths 

were not fixed. Next, a sensitivity analysis was conducted to determine the threshold value for 

short road segments. In order to avoid losing too much information in the data sets, we selected 

0.05 mile as the threshold value and removed all of the road segments having a length of less 

than 0.05 mile.  

Tables 8.1 and 8.2 show summaries of all numerical and categorical variables, 

respectively.  
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Table 8-1 Summary statistics of numerical variables for Interstate freeway segments in Washington state for 

years 2011 – 2014 after removing outliers and short segments 

Factor   

Type  

Classification   

Type  

Explanatory  

variables  
Min.  Max.  Mean  Median  St.Dev.  

Static  
Road  

conditions  

Segment length (ft)  264  71227.20  2342.11  1372.8  3615.54  

NOL  2  5  2.6  2  0.715  

COS  0  6.030  0.726  0  1.009  

OSW  0  18  6.596  8  3.741  

  ISW  0  18  3.770  4  2.843  

MWD  5.59  999  94.89  68  156.79  

SPL  46.67  70  65.58  70  4.87  

Dynamic  
Traffic 

characteristics  

AADT  6700  229500  68305.42  44000  58910.24  

AADT/Lane  1675  57375  12118.15  9500  8999.12  

Truck percentage  0%  29%  11.86%  8%  10.35%  

Note: NOL=number of lanes; COS=curvature of the segment; OSW=weighted average width of outer 
shoulder; ISW= weighted average width of inner shoulder; MWD=weighted average width of median; 
SPL=average speed limit; AADT=annual average daily traffic.  
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Table 8-2 Summary statistics of categorical variables for Interstate freeway segments in Washington state for 

years 2011 – 2014 after removing outliers and short segments 

Factor  

Type  
Classification  

Type  
Explanatory  

variables  

Number of  
categories  Category Types  

Static  
Road  

conditions  

HCT  3  S=Straight, L=Left, R=Right  

LST  3  
A= Asphalt, B= Bituminous, P= Portland Cement  

Concrete  

OST  6  
A= Asphalt, B= Bituminous, C= Curb, 

P=Portland Cement Concrete, W=Wall, O=Other  

IST  6  
A= Asphalt, B= Bituminous, C= Curb, 

P=Portland Cement Concrete, W=Wall, O=Other  

MST  4  
A= Asphalt, P=Portland Cement Concrete,  

S=Soil, O=Other  

Dynamic  
Weather 

conditions  

RSC  3  Dry, Wet, Snow/Ice/Slush  

Visibility  2  Good, Bad  

Note: HCT=horizontal curve type; LST=dominant lane surface type; OST=dominant outer shoulder 
type; IST=dominant inner shoulder type; MST=dominant median type; RSC=road surface conditions  

  

8.2 Generalized Nonlinear Models for Incident Prediction  

In classical linear regression models, the expectation of crash frequency (or rate) is 

formulated as an ordinary linear model. This model specification can be expressed as follows 

(McCullagh, 1984): 

                                                                                            (8.1)  

where yi denotes the crash frequency (or rate) along roadway segment i, E (y)i or 𝜇i is the 

expected crash frequency (or rate) along segment i during a certain time period; Li is the 
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segment length in miles; xij is the jth explanatory variable for segment i; 𝛽j is the corresponding 

coefficient for the jth explanatory variable; and J is the total number of explanatory variables 

considered in the model. In comparison to the simplest linear regression, more complicated 

models, such as Poisson and negative binomial models for crash frequency and logit and probit 

models for crash severity, have been used to interpret crash data. These models can be 

generalized by using a smooth and invertible linearizing link function to transform the 

expectation of the response variable, 𝜇i , to its linear predictor:  

                                               (8.2)  

where g(.) is the link function, which is monotonic, differentiable, and used to connect the linear 

predictor of the explanatory variables with the expected crash frequency (or rate) in various 

formats, such as identity, log, logit, etc. In this research, the log function was used for crash 

analysis.  

As we have discussed earlier, in many scenarios the relationship between the expected 

crash frequency (or rate) by severity level and its associated factors cannot be simply expressed 

by GLMs. GNMs are proposed as an extension of GLMs in order to satisfy such a specific 

requirement by changing the linear predictor to be nonlinear in the parameters, 𝛽j , in Equation 

(8.3).   

The GNM-based method uses a user-defined, customized function to extract the 

relationship between crash risks and contributing factors with more general assumptions. For the 

other explanatory variables, the diverse nonlinear predictor, U (x) , such as the polynomial 
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function, exponential function, parabolic function, logarithmic function, etc., may be utilized to 

extract proper data features. In general, the model format of U (x ) can be determined on the 

basis of a statistical analysis of the crash rate and a specific explanatory variable. Notice that the 

defined nonlinear function U (x ) is an assumed relationship. This defined function can be 

revised on the basis of further statistical analysis. Aggregating the nonlinear predictors for all the 

independent variables, equation (8.3) can be rearranged as:  

                               (8.3)  

where U j (xij ) is a nonlinear predictor for the jth explanatory variable; and 𝜔j is the 

corresponding weight for U j (x ij) . Consequently, the GNM link functions becomes:  

 (8.4)   

If all of the U j (xij ) in the model are linear regressions of xij , a GNM will degrade to a GLM. 

Therefore, in this research, GLMs were special cases of GNMs. To make road sections 

comparable, in this research, g(𝜇i ) was considered as a logarithmic function and applied on the 

basis of accident density (i.e., accidents per kilometer-year) as show below:  

                               (8.5)  
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where di = 𝜇i Liyi , Li , and yi are the crash density, segment length, and time period length 

(years) of crash frequency of roadway segment i respectively; and 𝜔 = [𝜔 1, 𝜔2,…, 𝜔J ]T is the 

coefficient vector for Ui =[U x1( i1),U x2( i2),…,U xJ ( iJ )] when the expected crash density is 

estimated.  

8.3 GNM-Based Multinomial Logistic Regression Approach  

Logistic regression is generally used to handle categorical data (Bham, Javvadi and 

Manepalli, 2011). It can handle bivariate response variables, i.e., variables with two possible 

values, and can be extended to handle a polytomous response variable Y that takes a discrete set 

of values reflecting K categories (K can be greater than two). Since the response variable is 

nominal (unordered), a generalized logit model is suitable. This approach frames K-1 logits for 

the response variable to compare each categorical level with a reference category.  

In this research, three categories were considered for the crash severity (i.e., fatal (k=1), 

injury (k=2), and PDO (k=3)), in which PDO crashes were used as the base category for 

comparison with the other categories. The crash severity type, denoted by Y , was the response 

variable, whereas contributing factors for road conditions, traffic characteristics, and weather 

conditions were the independent variables denoted by xij (j=1, 2, …, J), where i denotes the 

observation and J denotes the number of independent variables. The expression of Y is defined 

as below:  
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                                            (8.6)  

Based on the GNM link functions in equation (8.5), when the response categories 1, …, 

K (K=3) are unordered, Y is related to independent variables through a set of K-1 baseline 

category logits as shown below:  

 

 (8.7)  

  

where Pr(Y = ki ) is the probability of crash of severity type k; Uki = [Uk1(xi1),Uk2(xi2),…,UkJ (xiJ )] is 

the nonlinear predictor vector of observation i; 𝜔k =[𝜔 k1, 𝜔k2,…, 𝜔kJ ]T is the coefficient 

vector for kth level of the response variable.  

By exponentiating both sides of equation (8.7) and solving for the probabilities, we 

get:  

 Pr(Yi = k) = Pr(Yi = K e) Uki𝜔k , i =1,2,… ,n; k =1,…K -1            (8.8)  

Using the fact that all k of the probabilities must sum to one, we find:  
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  (8.9)  

According to equations (8.8) and (8.9), the other probabilities can be expressed as below:  

                            (8.10)  

Equations (8.9) and (8.10) are called the prediction functions of the GNM-based 

multinomial logistic regression approach. In equations (8.9) and (8.10), it can be seen that again, 

if all the U j (xij ) in the nonlinear predictor vector are linear regressions of xij , the GNM-based 

multinomial logistic regression approach will degrade to a normal multinomial logistic 

regression approach.  

8.4 Estimation of Nonlinear Predictors  

It is necessary to determine the appropriate predictors U j (xij ) and Ukj (xij ) in equations 

(8.9) and (8.10) before the corresponding coefficients 𝜔j and 𝜔kj can be calibrated. To better 

illustrate the nonlinear contribution function estimation process, an example is detailed to 

formulate the contribution function for the variable,AADT per lane as follows.  

Assume the number of crashes for each severity level follows the Poisson model, and all 

other dependent variables are approximately consistent across different AADT levels when the 

sample data are large enough.  Let j=1 denote the index of contributing factor AADT per lane. 

To develop an appropriate format of the predictor U x1( i1), the visualized comparisons between 
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the logarithm of the expectation of crash density (number of crashes per mile per year) and 

AADT per lane are illustrated in figure 8-1. The scatter points show the logarithm of crash 

density from the Interstate freeway segments in Washington for the years 2011-2014, classified 

by AADT per lane. As we can see, the logarithm of the average crash density tends to increase 

when the AADT per lane increases at a variable rate. The increase rate becomes smaller with the 

higher AADT per lane, which indicates the inappropriateness of using a linear contribution 

function. To address this issue, we adopted a logarithmic calculation as the nonlinear predictor 

to approximate the impacts of AADT on crash density:  

U x1( 1) = -0.371x1
2  + 0.29x1  –  2.07                                         (8.11)  

In comparison to the linear predictor L (x1) =  3.82x1 – 1.58, the value of R2 increases from 

0.8413 to 0.9051 when the nonlinear predictor, U x1( 1), is utilized, as shown in figure 8-1. 

Therefore, the nonlinear predictor is more suitable for describing the relationship between crash 

density and AADT, and it was employed in this study. The logarithm of AADT and its impacts 

on crash frequencies have been found significant, and thiese results are consistent with many 

previous studies (Wong, Sze and Li, 2007; Abdel-Aty and Haleem, 2011; Lao et al., 2014).  
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Figure 8-1 Logarithm of the expectation of crash density (number of crashes per mile per year) from Interstate 

freeway segments in Washington state for years 2011 – 2014, by AADT per lane  

Similar procedures can be applied to develop the formats of the predictors U x11( )i1 and 

U x21( i1) as shown below:   

U11(x1) = 0.159x1
2  – 0.1x1 + 0.0796                                          (8.12)  

U21(x1) = 0.132x1
2  – 0.126x1 + 0.108                                        (8.13)  

For the other contributing factors, similar studies can be conducted to develop the 

nonlinear predictor functions. The other contribution functions for the variables truck percentage 

(j=2), NOL (j=3), COS (j=4), WOS (j=5), WIS (j=6), WM (j=7), and ASL (j=8) are shown in 

equations (8.14) through (8.34), respectively:  
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                    (8.14)  

  U12(x2) = 0.245x2
2  – 0.114x2 + 0.0987                                   (8.15) 

 U22(x2) = 0.163x2
2  – 0.096x2 + 0.117                                  (8.16)  

NOL:                       U3(x3) = 0.35x3
2  – 1.99x3 + 3.18                                   (8.17)  

  U13(x3) = -0.217x3
2  – 0.043x3 + 0.137                                  (8.18)  

  U23(x3) = -0.188x3
2 + 0.163x3  – 1.02                                    (8.19)  

COS:                                      U4(x4) =0.342x4
2 e -0.278x43                                 (8.20)  

 U14 (x4 ) = -0.043x4
2  + 0.028x4  – 0.359                              (8.21)  

  U24(x4) = -0.036x4
2  + 0.0673x4  – 0.882                                 (8.22)  

OSW:                 U5(x5) = -0.274x5
2  + 0.785x5  – 1.06                             (8.23)  

  U15(x5) = 0.104x5
2  – 0.263x5  + 0.985                                    (8.24)  

 U25(x5) = 0.307x5
2  –  0.088x5 + 0.774                                (8.25) 

ISW:                      U6(x6) = -0.013x6
2  + 0.025x6  – 0.054                             (8.26)  
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  U16(x6) = 0.047x6
2  – 0.061x6  + 0.093                               (8.27)  

 U26(x6) = 0.012x6
2  – 0.069x6  + 0.084                                (8.28)  

MWD:         U7 (x7 ) = -0.476x7
2  + 0.584x7  – 0.137                             (8.29)  

 U17 (x7 ) = 0.353x7
2  – 0.183x7 + 0.564                                    (8.30)  

 U27 (x7 ) = 0.145x7
2  – 0.718x7  + 0.244                               (8.31)  

SPL:                   U8(x8) = -0.065x8
2  + 0.079x8  – 0.085                               (8.32)  

  U18(x8) = 0.084x8
2  – 0.098x8  + 0.112                                    (8.33)  

  U28(x8) = 0.101x8
2  – 0.099x8  + 0.113                                      (8.34)  

For the categorical contributing factors, including HCT (j=9), LST (j=10), OST (j=11), 

IST (j=12), MST (j=13), RSC (j=14), and visibility (j=15), an N-category class function was 

developed as below:  

   (8.35)  

  

Table 8-3 summarizes the estimated parameters for each categorical predictor function, 

including HCT (j=9), LST (j=10), OST (j=11), IST (j=12), MST (j=13), RSC (j=14), and 

visibility (j=15).   
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Table 8-3 Summary of the estimated parameters for each categorical predictor function 

Contributing  Factors  Fatal  Injury  Crash density  

Road conditions  

HCT  

      Straight (𝜋1,9 )  

 Left (𝜋 2,9 )  

Right (𝜋 3,9 )  

LST  

Asphalt (𝜋 1,10 )  

Bituminous (𝜋 2,10 )  

Portland Cement (𝜋 3,10 )  

OST  

Asphalt (𝜋 1,11 )  

Bituminous (𝜋 2,11 )  

Curb (𝜋 3,11 )  

Portland Cement (𝜋 4,11 )  

Wall (𝜋 5,11 )  

Other (𝜋 6,11 )  

IST  

Asphalt (𝜋 1,12 )  

Bituminous (𝜋 2,12 )  

Curb (𝜋 3,12 )  

Portland Cement (𝜋 4,12 )  

Wall (𝜋 5,12 )  

Other (𝜋 6,12 )  

MST  

  

  

-0.741  

-0.828  

-0.678  

  

-0.758  

-0.001  

-0.727  

  

-0.734  

-0.001  

-1.393  

-0.762  

-1.223  

-0.001  

  

-0.702  

-0.001  

-1.393  

-1.223  

-0.743  

-0.823  

  

  

  

-0.279  

-0.219  

-0.221  

  

-0.270  

-0.050  

-0.247  

  

-0.259  

-0.098  

-0.323  

-0.243  

-0.227  

-0.202  

  

-0.231  

-0.129  

-0.337  

-0.230  

-0.221  

-0.296  

  

  

  

0.412  

0.875  

0.851  

  

0.421  

-1.106  

0.772  

  

0.478  

0.362  

1.471  

1.198  

1.700  

0.673  

  

0.232  

0.335  

1.658  

1.746  

1.333  

1.036  

  

Asphalt (𝜋 1,13 )  

Portland Cement (𝜋 2,13 )  

Soil (𝜋 3,13 )  

Other (𝜋 4,13 )  

-0.799  

-0.798  

-0.703  

-1.308  

-0.303  

-0.263  

-0.230  

-0.253  

1.028  

1.097  

0.282  

1.552  
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Weather conditions   

RSC  

Dry (𝜋 1,14 )  

Wet (𝜋 2,14 )  

Snow/Ice/Slush (𝜋 3,14 )  

Visibility  

    Good (𝜋 1,15 )  

    Bad (𝜋 2,15 )  

  

  

-0.749  

-0.759  

-0.668  

  

-0.907  

-0.524  

  

  

-0.259  

-0.269  

-0.205  

  

-0.267  

-0.246  

  

  

0.795  

0.739  

-0.080  

  

0.825  

0.430  

 

8.5 Estimation of Coefficients in GNMs  

On the basis of the preceding results and estimated nonlinear predictors for each 

contributing factor, the coefficient vector 𝜔 = [𝜔1, 𝜔2, …, 𝜔J ]T in equation (8.5) and coefficient 

vector 𝜔k = [𝜔k1, 𝜔k2, …, 𝜔kJ ]T in equation (8.7) could be estimated by employing a 

multivariate regression method based on the collected data from Interstate freeways in 

Washington from 2011 to 2014. The results for significant factors (α=0.05) are shown in table 8-

4.  

  



81  

Table 8-4 Summation of the estimated parameters for each categorical predictor function 

Contributing  

Factors  

Coeff.  

Fatal   

(𝜔1 j )  

Std. 

error  
t- 

value  Coeff.  

Injury  

(𝜔2 j )  

Std. 

error  
t- 

value  Coeff.  

Crash density 

(𝜔j )  

Std. 

error  

  

t- 
value  

Traffic 

characteristics  

AADT/Lane  

Truck percentage  

  

  
0.114  
0.065  

  

  
0.093  
0.087  

  

  
15.651  
4.318  

  

  
0.402  
0.157  

  

  
0.068  
0.056  

  

  
19.154  
6.315  

  

  
0.714  
0.265  

  

  
0.047  
0.033  

  

  
21.865  
8.231  

Road conditions                    

NOL  

COS  

OSW  

ISW  

MWD  

SPL  

HCT  

LST  

OST  

IST  

MST  

-0.012  

0.109  

0.145  

-0.089  

0.005  

-0.003  

0.010  

-0.024  

0.078  

0.102  

0.091  

0.132  

0.078  

0.108  

0.093  

0.037  

0.012  

0.013  

0.028  

0.030  

0.045  

0.076  

-8.213  

4.332  

6.784  

-3.424  

2.987  

-2.874  

3.418  

-2.873  

3.589  

6.732  

4.383  

-0.278  

0.312  

0.398  

-0.021  

0.038  

-0.08  

0.032  

-0.047  

0.121  

0.245  

0.184  

0.098  

0.092  

0.132  

0.045  

0.009  

0.023  

0.031  

0.036  

0.046  

0.068  

0.093  

-9.334  

6.124  

8.767  

-4.233  

4.732  

-4.675  

4.762  

-8.165  

5.327  

8.404  

9.673  

-0.312  

0.437  

0.576  

-0.091  

0.105  

-0.012  

0.068  

-0.172  

0.239  

0.415  

0.205  

0.076  

0.083  

0.102  

0.106  

0.051  

0.007  

0.018  

0.212  

0.075  

0.066  

0.142  

-5.892  

5.982  

7.818  

-4.983  

5.875  

-3.987  

5.383  

9.289  

10.231  

13.538  

12.665  

Weather conditions   

RSC  

Visibility  

  

-0.302  

0.213  

  

0.078  

0.155  

  

-5.884  

4.672  

  

-0.428  

0.353  

  

0.066  

0.098  

  

-6.893  

5.387  

  

-0.398  

1.325  

  

0.058  

0.106  

  

-7.545  

8.342  

R2  
 

0.856  
  

0.902  
  

0.913  
 

  

8.6 Safety Performance Index  

In order to develop a new safety performance index that can reflect crash counts by 

severity level, the generalized nonlinear model was employed to estimate the expected crash 

density in a roadway segment i as shown below:  
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           (8.36)   

i.e.,   

                     (8.37)   

where di = 𝜇i L i yi is the crash density of roadway segment i during a certain time period.  

Based on equations (8.5), (8.7), and (8.37), we can get the expected crash density for 

different severity types.  

(1) Expected Fatal Crash Density:   

               (8.38)  

where di1 is the expected fatal crash density along segment i during a certain time period;  

𝜔=[𝜔 1, 𝜔 2, … , 𝜔 J ]T is the coefficient vector for Ui = [U1(xi1),U 2(xi2), … ,UJ (xiJ )] when 

estimating the expected crash density.  

(2) Expected Injury Crash Density:  

 

        (8.39)  

where di2 is the expected injury crash density along segment i during a certain time period.  

(3) Expected PDO Crash Density  
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      (8.40)  

where di3 is the expected PDO crash density along segment i during a certain time period. Based 

on equations (8.38) through (8.40), the equivalent property damage only (EPDO) crash 

frequency measure was modified and employed to weight crashes according to severity (fatal, 

injury, and PDO) to develop a combined crash density and severity score (CCDSS) for each site. 

On the basis of the crash counts and equation (7.3), we can calculate that 𝜂F = 0.0028, 𝜂I = 0.29, 

𝜂P = 0.7072 ; then, the values of the risk weight factors are obtained as Fw = 3.884, Iw = 3.691, 

Pw = 1.  

Table 8-5 presents the formulation of Safety Performance Function (SPF), Safety 

Performance Index (SPI) and Potential Safety Improvement Index (PSII) based on GNM.  
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Table 8-5 Description of SPF, SPI and PSII based on GNM 

 

Model   Description  

𝑆𝑃𝐹  ECCDSSi = di1Fw + di2Iw  + di3Pw, i = 1,2, …, n,  

𝑆𝑃𝐼𝑖  SPIi = 𝜆iECCDSSi + (1– 𝜆i )OCCDSSi , i = 1,2, … , n,  

where   

 OCCDSSi  = 𝜎i1Fw  + 𝜎i2Iw  + 𝜎i3Pw, i =1,2, … , n,  

 
𝜎i1, 𝜎i2, 𝜎i4 are the observed fatal, injury, and PDO crash density along segment i  

𝜆i = a weighting factor  

𝛼i = over-dispersion parameter  

 𝑃𝑆𝐼𝐼𝑖  PSIIi  = 𝜆iECCDSSi + (1 – 𝜆i )OCCDSSi  – ECCDSSi = SPIi  – ECCDSSi, i =1,2, , n,  

Note: OCCDSSi is the observed combined crash density and severity score for roadway 

segment i, 𝐸𝐶𝐶𝐷𝑆𝑆𝑖 = expected combined crash density and severity score for roadway 

segment i.  

  

8.7 Evaluation Tests of the Performance of HSID Methods  

In order to demonstrate the effectiveness of the SPI and PSII as developed in this research, 

they were compared with six reference performance indexes, which included the expected crash 

density based on the conventional safety performance function from the HSM (i.e., NB GLM), 

expected crash density based on the GNM, EB estimated crash density based on the NB GLM, 

EB estimated crash density based on the GNM, ARP based on the NB GLM, and ARP based on 
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the GNM. In this evaluation, both the top 1 percent and 5 percent of the locations were used as 

experimental values.  

8.7.1 Site Consistency Test   

Following equation (7.10), the site consistency test was done for all eight reference 

models. Table 8-6 shows that the SPI method outperformed other HSID methods in identifying 

both the top 1 percent and 5 percent of hotspots with the highest SCT values, 21521.79 and 

44251.68, respectively, in Period 2, followed closely by the EB CD (GNM) method. The ARP 

(NB GLM) performed the worst in both cases, with the identified hotspots experiencing the 

lowest number of SCT values, say, 19034.25 and 42106.73, respectively.  

Table 8-6 Results of site consistency test of various HSID methods 

HSID  

Method  

Index  

(h)  

HSID  

Method  

Name  

𝛾= 0.01  𝛾= 0.05  

SCTh t,  

Period 1   
(2011-2012)  

SCTh t, 1  

Period 2  
 (2013-2014)  

SCTh t,  

Period 1   
(2011-2012)  

SCTh t, 1  

Period 2   
(2013-2014)  

1  SPI  22943.06  21521.79  46310.12  44251.68  

2  PSII  22198.11  20879.23  45389.79  43921.56  

3  
CD (NB 

GLM)   
21036.33  20105.38  43897.54  42868.83  

4  CD (GNM)  21901.86  20993.89  44890.67  43571.45  

5  
EB CD (NB 

GLM)  
21896.77  20981.31  45303.46  43784.09  

6  
EB CD 

(GNM)  
22856.34  21349.04  45987.98  44012.49  

7  
ARP (NB 

GLM)  
20131.67  19034.25  43015.82  42106.73  

8  ARP (GNM)  20358.78  19734.55  43823.17  42871.29  
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8.7.2 Method Consistency Test   

Table 8-7 shows the number of similarly identified hotspots identified by alternative 

HSID methods over the two periods, which was determined on the basis of the method described 

in Section 7.3.2.   

Table 8-7 Results of method consistency test of various HSID methods 

HSID   
Method   

Index (h)  
HSID Method Name   0.01   0.05  

1  SPI  124 (60.7%)  546 (53.5%)  

2  PSII  103 (50.5%)  452 (44.3%)  

3  
CD (NB 

GLM)   
92 (45.1%)  406 (39.8%)  

4  
CD (GNM)  

101 (49.5%)  423 (41.5%)  

5  
EB CD (NB 

GLM)  
109 (53.4%)  441 (43.2%)  

6  
EB CD (GNM)  

118 (57.8%)  472 (46.3%)  

7  
ARP (NB 

GLM)  
83 (40.7%)  382 (37.5%)  

8  
ARP (GNM)  

88 (43.1%)  393 (38.5%)  

  

The SPI method was superior in this test by identifying the largest number of the same 

hotspots in both cases of 𝛾 = 0.01 and 𝛾= 0.05, with 124 and 546 roadway segments, 

respectively. In other words, the SPI method identified 124 segments in 2011-2012 that were 

also identified as hotspots in 2013-2014. The ED CD (GNM), which performed slightly better 

than the ED CD (GLM) method, placed second, identifying 118 consistent hotspots (in the case 

of 𝛾 = 0.01) and 472 consistent hotspots (in the case of 𝛾 = 0.05).  
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8.7.3 Total Rank Differences Test  

Table 8-8 illustrates that the SPI method was superior in the total rank differences test. In 

both the 𝛾 = 0.01 and 𝛾 = 0.05 cases, the SPI method had significantly smaller-summed ranked 

differences. The total rank difference test was described in Section 7.3.3.  

 

Table 8-8 Results of total rank differences test of various HSID methods 

HSID   
Method   

Index (h)  
HSID Method Name   0.01   0.05  

1  SPI  2354  10237   

2  PSII  3031  12798  

3  
CD (NB 

GLM)   
3672  14781  

4  
CD (GNM)  

3298  13587  

5  
EB CD (NB 

GLM)  
3158  13016  

6  
EB CD (GNM)  

2887  11973  

7  
ARP (NB 

GLM)  
4123  18167  

8  
ARP (GNM)  

3887  17105  

  

8.7.4 Total Score Test  

The total score test was performed according to the procedure described in Section 7.3.4 

. Table 8-9 illustrates the results of the total score test of the eight HSID methods, in which SPI 

performed best in both the  𝛾= 0.01 and 𝛾 = 0.05 cases, followed closely by the EB CD (GNM) 

method, with a 93.81 score (in the case of 𝛾 = 0.01) and 92.12 score (in the case of 𝛾 = 0.05). 

ARP (NB GLM) performed the worst in both cases, with a 70.82 score and 73.82 score, 

respectively.   



88  

Table 8-9 Results of the total score test of various HSID methods 

HSID   
Method   

Index (h)  
HSID Method Name  𝛾 = 0.01  𝛾 = 0.05  

1  SPI  100  100  

2  PSII  87.89  89.31  

3  
CD (NB 

GLM)   
78.55  82.07  

4  
CD (GNM)  

85.37  85.83  

5  
EB CD (NB 

GLM)  
88.63  88.14  

6  
EB CD (GNM)  

93.81  92.12  

7  
ARP (NB 

GLM)  
70.82  73.82  

8  
ARP (GNM)  

75.16  77.02  

  

On several criteria, the SPI outperformed other methods by a wide margin. This evaluation 

suggests that the SPI method (of the methods compared) has the potential to become the industry 

standard.  
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Chapter 9 Regional, Map-Based Analytical Platform   

A regional, map-based analytical platform was developed on the DRIVE Net system to 

highlight the methodology developed under this project. Ultimately, the existing safety 

performance analysis function under the system’s “Safety Performance” module was expanded. 

The developed SPI color codes the regional map on the basis of safety performance. The PSII 

highlights potential safety improvements on the map.  By combining the two indices on the 

regional map, one can easily identify accident hotspots and the key influencing factors to 

consider in an improvement package.  

The interface of the safety performance module on the regional, map-based analytical 

platform is illustrated in figure 9-1. There are three sub-functions implemented on this panel: 

Incident Frequency (NB GLM), Estimated Crash Mean, and Potential Safety Improvement 

Index (ARP NB GLM). The new SPI and PSII were added as expanded safety performance 

analysis options. As stated previously, within a selected time range and corridor, the SPI shows 

a more comprehensive view of safety performance on a given corridor. The accident/incident 

data were from the Washington Incident Tracking System (WITS) and HSIS database. The SPI 

level ranges from Level A to Level F, where Level A (light green) corresponds to the highest 

safety performance and Level F (dark red) corresponds to the lowest safety performance 

expected, as shown in figure 9-2.  
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Figure 9-1 Interface of the safety performance module on the regional, map-based analytical platform  

  

Figure 9-2 SPI levels range from Level A to Level F in the safety performance module.  

The PSII implements the EB method in the modeling part. In this function, both the 

historical incident data and the characteristics of the selected corridor are used as model inputs. 

The output format still uses the six different colors representing Level A to Level F to show the 

potential safety improvement index on the map, where Level A shows the segments have the 

least potential to improve safety, and Level F shows the segments have the most potential to 

improve safety. Figure 9-3 shows an example of this function.  
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Figure 9-3 An example of the PSII function.  
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Chapter 10 Conclusions and Recommendations  

This chapter discusses the conclusions of this research and explains some potential 

research directions for future studies. The outcome of this project has been and will be 

disseminated to different audiences through making presentations at different conferences, 

organizing workshops at state DOTs involved in the PacTrans consortium, publishing papers in 

reputable transportation safety journals, and development of a platform to implement the safety 

performance assessment.    

10.1 Conclusions  

This research extended the current state-of-the-art of crash count modeling by 

considering severity prediction to develop a two-stage (integrating logit and generalized linear 

regression models) and generalized nonlinear regression model for formulating a new CCS-

based HSID method. This method can be utilized to improve the safety performance module of 

DRIVE Net, an analytical platform that allows for state-wide highway safety performance 

assessment. The most important contributing factors (static and dynamic) to traffic crashes with 

different severity types, including traffic characteristics, road conditions, and weather 

conditions, are identified by using a structured framework developed in this research. A total of 

802 road segments on I-5, I-90, I-82, I-182, I-205, I-405 and I-705 in Washington state were 

selected as the candidate sites for data collection. A data quality control method was employed 

to remove short road segments, and a sensitivity analysis was conducted to determine the 

threshold values for short road segments. Two-stage regression and GNM-based multinomial 

logistic regression approaches were developed to estimate the probability and frequency of 

crashes for different severity levels. The regression analysis found that the contributing factors, 

including AADT per lane, NOL, COS, OSW, ISW, MWD, SPL, HCT, LST, OST, IST, MST, 

RSC, and visibility, showed strong relationships with the crash frequency of different severity 
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levels. It also showed that the significance and degrees of nonlinearity for each crash severity 

level were different among the contributing factors. A CCS-based HSID method as developed 

by employing the two-stage regression and the GNM-based multinomial logistic regression 

approaches. A new safety performance index and a new potential safety improvement index 

were developed by introducing a risk weight factor and were compared by employing HSID 

evaluating methods. The results of four consistency tests revealed that the SPI method is the 

most consistent and reliable method for identifying hotspots. Although it can only be applied to 

roadway segments where crash data for different levels of severity are available, with the rapid 

development of intelligent transportation systems and data collection technologies, this method 

could become useful in identifying high-risk road segments. This evaluation suggests that the 

SPI method (among the methods compared) has the potential to become the industry standard. 

Finally, a regional, map-based analytical platform esd developed in the DRIVE Net system by 

expanding the safety performance module with the new SPI and PSII functions.  

10.2 Recommendations for Future Research  

The team finds future work focusing on the following four areas to be promising: (1) 

developing a framework for a real-time safety performance analysis platform; (2) considering 

the analysis of crash frequency by collision type and severity; (3) including driver characteristics 

in crash prediction models; and (4) developing new criteria for evaluating methods of 

identifying hotspots based on new safety performance indexes.      
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